Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn tham khảo tại đây nhé :
Bài 57 Sách bài tập - tập 2 - trang 98 - Toán lớp 8 | Học trực tuyến
tuy ko giống hết nhưng bn có thể dựa vào đó mà tham khảo
gọi d là đường thẳng cho dễ nhé
Qua B và D kẻ 2 đường thẳng song song với d cắt đường chéo AC của hbh ABCD tại H và K. Gọi I là tâm đối xứng của hbh ABCD.
Áp dụng ĐL Thales ta có các tỉ số: AB/ AB' = AH/AC' ;AD/AD' = AK/AC'
=> AB/AB'+AD/AD'=AH+AK/AC'=2AK+IK+IH/AC'(1)
CM:tam giác DKI=tam giác DHI (g.c.g) => IK=IH
Thay IK=IH vào (1) ta đc: AB/AB'+AD/AD'=2AK+2IK/AC'=2(AK+IK)/AC'=2AI/AC'=AC/AC'
Vậy...
=))
Kẻ DI,DJ lần lượt vuông góc với AK,CK
\(a,S_{AND}=\dfrac{1}{2}AN\cdot DI=\dfrac{1}{2}S_{ABCD}\) (chung đáy AD, cùng chiều cao hạ từ N)
\(b,S_{CDM}=\dfrac{1}{2}CM\cdot DJ=\dfrac{1}{2}S_{ABCD}\) (chung đáy CD, cùng chiều cao hạ từ M)
\(\Rightarrow\dfrac{1}{2}AN\cdot DI=\dfrac{1}{2}CM\cdot DJ\Rightarrow DI=DJ\left(AN=CM\right)\\ \Rightarrow\Delta DIK=\Delta DJG\left(ch-cgv\right)\\ \Rightarrow\widehat{IKD}=\widehat{JKD}\)
Vậy KD là phân giác \(\widehat{AKC}\)