Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hàm số : \(y=f\left(x\right)=\dfrac{2}{3}x+5\) với \(x\in R\)
Giả sử : \(x_1< x_2\)
\(f\left(x_1\right)=\dfrac{2}{3}x_1+5\)
\(f\left(x_2\right)=\dfrac{2}{3}x_2+5\)
Từ \(x_1< x_2\) \(\Rightarrow\dfrac{2}{3}x_1< \dfrac{2}{3}x_2\)
\(\Rightarrow\dfrac{2}{3}x_1+5< \dfrac{2}{3}x_2+5\)
\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)
Vậy hàm số đồng biến trên \(R\)
\(y=f\left(x\right)=21x-12\sqrt{3}x-m\)
\(=\left(21-12\sqrt{3}\right)x-m\)
vì \(21-12\sqrt{3}>0\)
nên hàm số luôn đồng biến với mọi x thuộc R
Ta có
m2 + m + 1 = (m2 + m + \(\frac{1}{4}\)) + \(\frac{3}{4}\)
= \(\frac{3}{4}+\left(m+\frac{1}{2}\right)^2>0\)
Hàm số này có hệ số a luôn luôn dương với mọi m nên hàm số đồng biến trên R với mọi m
Ta có tập xác định của hàm số : \(D=\text{[}0;+\infty\text{)}\)
Gọi \(x_1,x_2\) là các giá trị thuộc tập xác định của hàm số và \(0\le x_1< x_2\)
\(\Rightarrow x_1-x_2< 0\Leftrightarrow\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)< 0\Leftrightarrow\hept{\begin{cases}\sqrt{x_1}-\sqrt{x_2}< 0\\\sqrt{x_1}+\sqrt{x_2}>0\end{cases}}\)
Xét : \(g\left(x_1\right)-g\left(x_2\right)=\left(3\sqrt{x_1}-2\right)-\left(3\sqrt{x_2}-2\right)=3\left(\sqrt{x_1}-\sqrt{x_2}\right)< 0\)
\(\Rightarrow g\left(x_1\right)< g\left(x_2\right)\)
Vậy ta có \(\hept{\begin{cases}0\le x_1< x_2\\g\left(x_1\right)< g\left(x_2\right)\end{cases}}\) => Hàm số đồng biến với mọi \(x\ge0\)(đpcm)
a: Khi x>0 thì y>0
=> Hàm số đồng biến
Khi x<0 thì y<0
=> Hàm số nghịch biến