K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 7 2021

\(y'=3x^2-6x\)

Do M thuộc (C) nên hệ số góc của tiếp tuyến tại M:

\(k=f\left(a\right)=3a^2-6a\)

\(f'\left(a\right)=6a-6>0;\forall a\in\left[2;3\right]\)

\(\Rightarrow f\left(a\right)\) đồng biến trên \(\left[2;3\right]\Rightarrow k_{max}\) khi \(a=3\)

\(\Rightarrow b=a^3-3a^2-1=-1\)

\(S=3-1=2\)

23 tháng 4 2020

hello các bạn

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

a, Hệ số góc của tiếp tuyến của đồ thị là:

\(y'\left(2\right)=-4\cdot2+1=-7\)

b, Phương trình tiếp tuyến của đồ thị (C) tại điểm M(2;-6) là:

\(y=y'\left(2\right)\cdot\left(x-2\right)-6=-7\left(x-2\right)-6=-7x+8\)

NM
21 tháng 3 2022

a. \(y'\left(x_0\right)=-2x_0+3\)

b. phương trình tiếp tuyến tại x0 =2 là 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=-\left(x-2\right)+0\text{ hay }y=-x+2\)

c.\(y_0=0\Rightarrow\orbr{\begin{cases}x_0=1\\x_0=2\end{cases}\Rightarrow PTTT\orbr{\begin{cases}y=x-1\\y=-x+2\end{cases}}}\)

d. vì tiếp tuyến vuông góc với đường thẳng có hệ số góc bằng 1 nên tiếp tuyến có hệ số góc = -1 

hay \(-2x_0+3=-1\Leftrightarrow x_0=2\Rightarrow PTTT:y=-x+2\)

NV
23 tháng 4 2022

\(y'=4x^3-4mx\Rightarrow y'\left(1\right)=4-4m\)

\(A\left(1;1-m\right)\)

Phương trình tiếp tuyến d tại A có dạng:

\(y=\left(4-4m\right)\left(x-1\right)+1-m\)

\(\Leftrightarrow\left(4-4m\right)x-y+3m-3=0\)

\(d\left(B;d\right)=\dfrac{\left|\dfrac{3}{4}\left(4-4m\right)-1+3m-3\right|}{\sqrt{\left(4-4m\right)^2+1}}=\dfrac{1}{\sqrt{\left(4-4m\right)^2+1}}\le1\)

Dấu "=" xảy ra khi và chỉ khi \(4-4m=0\Rightarrow m=1\)

29 tháng 5 2022

y′=4x3−4mx⇒y′(1)=4−4my′=4x3−4mx⇒y′(1)=4−4m

A(1;1−m)A(1;1−m)

Phương trình tiếp tuyến d tại A có dạng:

y=(4−4m)(x−1)+1−my=(4−4m)(x−1)+1−m

⇔(4−4m)x−y+3m−3=0⇔(4−4m)x−y+3m−3=0

d(B;d)=∣∣∣34(4−4m)−1+3m−3∣∣∣√(4−4m)2+1=1√(4−4m)2+1≤1d(B;d)=|34(4−4m)−1+3m−3|(4−4m)2+1=1(4−4m)2+1≤1

Dấu "=" xảy ra khi và chỉ khi 4−4m=0⇒m=1

\(y'=\left(x^3-3x^2+4x-1\right)'=3x^2-3\cdot2x+4\)

\(=3x^2-6x+3+1=3\left(x-1\right)^2+1>=1\)

Dấu = xảy ra khi x=1

=>Chọn A

9 tháng 5 2021

Theo mình không tìm được cụ thể a,b đâu, bởi nó còn thiếu 1 pt nữa

\(A\left(a;a^3-3a^2+2a+1\right);B\left(b;b^3-3b^2+2b+1\right)\)

\(k_A=k_B\Leftrightarrow y'\left(a\right)=y'\left(B\right)\Leftrightarrow3a^2-6a+2=3b^2-6b+2\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-2\left(a-b\right)=0\Leftrightarrow\left(a-b\right)\left(a+b-2\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\left(loai\right)\\a+b=2\end{matrix}\right.\)

 

11 tháng 5 2021

Cảm ơn bạn nhiều nhé!!

Cho hàm số y = f(x) có đồ thị (C), một điểm \({M_0}\) cố định thuộc (C) có hoành độ \({x_0}\). Với mỗi điểm M thuộc (C) khác \({M_0}\), kí hiệu \({x_M}\) là hoành độ của điểm M và \({k_M}\) là hệ số góc của cát tuyến \({M_0}M\). Giả sử tồn tại giới hạn hữu hạn \({k_0} = \mathop {\lim }\limits_{{x_M} \to {x_0}} {k_M}\). Khi đó, ta coi đường thẳng \({M_0}T\) đi qua \({M_0}\) và có hệ số góc là \({k_0}\) là ví trị...
Đọc tiếp

Cho hàm số y = f(x) có đồ thị (C), một điểm \({M_0}\) cố định thuộc (C) có hoành độ \({x_0}\). Với mỗi điểm M thuộc (C) khác \({M_0}\), kí hiệu \({x_M}\) là hoành độ của điểm M và \({k_M}\) là hệ số góc của cát tuyến \({M_0}M\). Giả sử tồn tại giới hạn hữu hạn \({k_0} = \mathop {\lim }\limits_{{x_M} \to {x_0}} {k_M}\). Khi đó, ta coi đường thẳng \({M_0}T\) đi qua \({M_0}\) và có hệ số góc là \({k_0}\) là ví trị giới hạn của cát tuyến \({M_0}M\) khi điểm M di chuyển dọc theo (C) dần tới \({M_0}\) . Đường thẳng \({M_0}T\)được gọi là tiếp tuyến của (C) tại điểm \({M_0}\), còn \({M_0}\) được gọi là tiếp điểm (Hình 3).

 

a)     Xác định hệ số góc \({k_0}\) của tiếp tuyến \({M_0}T\) theo \({x_0}\)

b)    Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm \({M_0}\)

1
QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)     \({k_0} = \mathop {\lim }\limits_{x \to {x_M}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = f'({x_0})\)

b)    Phương tình tiếp tuyến của đồ thị hàm số tại điểm \({M_0}\):

\(y = {k_0}(x - {x_0}) + {y_0}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

a, Ta có: \(y'=\left(x^2\right)'=2x\Rightarrow y'\left(1\right)=2\cdot1=2\)

Vậy hệ số góc của tiếp tuyến của parabol \(y=x^2\) tại điểm có hoàng độà k = 2.

b, Ta có: \(y_0=1^2=1\)

Vậy phương trình tiếp tuyến là \(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=2\left(x-1\right)+1=2x-1\)