Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Cách giải:
Xét phương trình hoành độ giao điểm của (C) và đường thẳng y = 2x + m:
Dễ dàng kiểm tra được x = 2 không phải nghiệm của phương trình (*) với mọi m
Để phương trình (*) có 2 nghiệm phân biệt x1, x2 thì Δ > 0 ⇔ (m - 6)2 + 8(2m + 3) > 0 ⇔ m2 + 4m + 60 > 0, luôn đúng
Tiếp tuyến của (C) tại hai điểm giao song song với nhau
Vậy, có 1 giá trị thực của tham số m thỏa mãn yêu cầu đề bài.
Ta có : \(y'=-\frac{1}{\left(x-1\right)^2};x\ne1\)
Giao điểm cả 2 đường tiệm cận là I(1;2)
Gọi \(M\left(x_0;2+\frac{1}{x_0-1}\right)\) là tiếp điểm. Khi đó hệ số góc của tiếp tuyến \(\Delta\) tại M là \(k_1=-\frac{1}{\left(x_0-1\right)^2}\)
Ta có \(\overrightarrow{IM}\left(x_0-1;\frac{1}{x_0-1}\right)\) nên đường thẳng IM có hệ số góc \(k_2=\frac{1}{\left(x_0-1\right)^2}\)
\(IM\perp\Delta\Leftrightarrow k_1k_2=-1\Leftrightarrow x_0=0;x_0=2\)
Vậy có 2 điểm cần tìm là : \(M_1\left(0;1\right);M_2\left(2;3\right)\)
Tiếp tuyến của C vuông góc với đường thẳng y= -x + 2017 nên hệ số góc của tiếp tuyến là k 2 thỏa mãn ( - 1 ) k 2 = - 1 ⇒ k 2 = 1
Suy ra k 2 = y ' = 1 ⇒ 3 x 2 - 4 x + 2 ⇔ 3 x 2 - 4 x + 2 = 0 ( * )
Vì x 1 , x 2 là nghiệm của (*) nên áp dụng Vi-ét ta có x 1 + x 2 = 4 3
Chọn C
Câu 1:
\(f'\left(1\right)=g'\left(1\right)=k\)
\(h\left(x\right)=\frac{f\left(x\right)+2}{g\left(x\right)+1}\Rightarrow h'\left(x\right)=\frac{f'\left(x\right)\left[g\left(x\right)+1\right]-g'\left(x\right)\left[f\left(x\right)+2\right]}{\left[g\left(x\right)+1\right]^2}\)
\(\Rightarrow h'\left(1\right)=\frac{k\left(b+1\right)-k\left(a+2\right)}{\left(b+1\right)^2}=\frac{k\left(b-a-1\right)}{\left(b+1\right)^2}\)
Mà \(h'\left(1\right)=k\Rightarrow k=\frac{k\left(b-a-1\right)}{\left(b+1\right)^2}\Rightarrow\frac{b-a-1}{\left(b+1\right)^2}=1\)
\(\Leftrightarrow b-a-1=\left(b+1\right)^2\Rightarrow a=b-1-\left(b+1\right)^2\)
\(\Rightarrow a=-b^2-b-2\)
Câu 2:
\(y=f\left(x\right)=\frac{x+1}{x-2}\Rightarrow f'\left(x\right)=\frac{-3}{\left(x-2\right)^2}\)
Phương trình hoành độ giao điểm:
\(\frac{x+1}{x-2}=x+m\Leftrightarrow x+1=\left(x+m\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+\left(m-3\right)x-2m-1=0\)
\(\Delta=\left(m-3\right)^2+4\left(2m+1\right)=\left(m+1\right)^2+12>0\)
\(\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt A và B có hoành độ giả sử là a và b
Theo Viet: \(\left\{{}\begin{matrix}a+b=3-m\\ab=-3m-1\end{matrix}\right.\) \(\Rightarrow3a+3b-ab=10\) (1)
Mặt khác do tiếp tuyến tại A và B song song
\(\Leftrightarrow\frac{-3}{\left(a-2\right)^2}=\frac{-3}{\left(b-2\right)^2}\Leftrightarrow\left[{}\begin{matrix}a-2=b-2\\a-2=2-b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=4-b\end{matrix}\right.\)
TH1: \(a=b\) thay vào (1):
\(\Rightarrow-a^2+6a-10=0\left(vn\right)\)
TH2: \(a=4-b\)
\(\Rightarrow a+b=4\Rightarrow3-m=4\Rightarrow m=-1\)
+Ta có đạo hàm y’ = 3x2- 6mx+ 3( m+ 1) .
Do K thuộc ( C) và có hoành độ bằng -1, suy ra K( -1; -6m-3)
Khi đó tiếp tuyến tại K có phương trình
∆: y= ( 9m+ 6) x+ 3m+ 3
Đường thẳng ∆ song song với đường thẳng d
⇒ 3 x + y = 0 ⇔ y = - 3 x ⇔ 9 m + 6 = - 3 3 m + 3 ≠ 0 ⇔ m = - 1 m ≠ - 1
Vậy không tồn tại m thỏa mãn đầu bài.
Chọn D.
- Phương trình hoành độ giao điểm của d và (C) là
- Theo định lí Viet ta có x1+x2=-m;
Giả sử A( x1; y1); B( x2; y2).
- Ta có nên tiếp tuyến của (C) tại A và B có hệ số góc lần lượt là và .Vậy
- Dấu "=" xảy ra khi và chỉ khi m= -1.
Vậy k1+ k2 đạt giá trị lớn nhất bằng -2 khi m= -1.
Chọn A.
+ Phương trình hoành độ giao điểm của d và (C) là
+ Theo định lí Viet ta có x1+ x2= -m ; x1.x2= ( -m-1) /2.
Gọi A( x1; y1) ; B( x2: y 2) .
+ Ta có y ' = - 1 ( 2 x - 1 ) 2 , nên tiếp tuyến của ( C) tại A và B có hệ số góc lần lượt là
k 1 = - 1 ( 2 x 1 - 1 ) 2 ; k 2 = - 1 ( 2 x 2 - 1 ) 2
Dấu "=" xảy ra khi và chỉ khi m= -1.
Vậy k1+ k2 đạt giá trị lớn nhất bằng - 2 khi m= -1.
Chọn B.
\(y=x-2+\frac{1}{x}\Rightarrow y'=1-\frac{1}{x^2}=\frac{x^2-1}{x^2}\)
Gọi hoành độ 2 điểm là a và b
\(\Rightarrow\left(\frac{a^2-1}{a^2}\right)\left(\frac{b^2-1}{b^2}\right)=-1\Leftrightarrow a^2b^2-a^2-b^2+1=-a^2b^2\)
\(\Leftrightarrow2a^2b^2-\left(a^2+b^2\right)+1=0\)
\(\Leftrightarrow2a^2b^2-\left(a+b\right)^2+2ab+1=0\) (1)
Mặt khác, a và b là nghiệm của pt:
\(x-2+\frac{1}{x}=k\Leftrightarrow x^2-\left(k+2\right)x+1=0\)
Theo Viet ta có: \(\left\{{}\begin{matrix}a+b=k+2\\ab=1\end{matrix}\right.\) (2)
Thế (2) vào (1):
\(2-\left(k+2\right)^2+2+1=0\Leftrightarrow\left(k+2\right)^2=5\Rightarrow\left[{}\begin{matrix}k=-2+\sqrt{5}\\k=-2-\sqrt{5}\end{matrix}\right.\)