Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left(2m-6\right)^2-4\left(-4m+1\right)\)
\(=4m^2-24m+36+16m-4\)
\(=4m^2-8m+32=4m^2-8m+4+28=\left(2m-2\right)^2+28>0\)
=>(P) luôn cắt trục hoành tại hai điểm phân biệt
Theo đề, ta có:
\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=8\)
=>\(\left(2m-6\right)^2-4\left(1-4m\right)=64\)
=>\(4m^2-24m+36-4+16m-64=0\)
=>4m^2-8m-32=0
=>m^2-2m-8=0
hay \(m\in\left\{4;-2\right\}\)
Lời giải:
Để pt \(x^2-2(m-1)x+m^2-2m=0\) có hai nghiệm thì:
\(\Delta'=(m-1)^2-(m^2-2m)>0\Leftrightarrow 1>0\) (luôn đúng với mọi m)
Khi đó áp dụng hệ thức Viete với $x_1,x_2$ là hai nghiệm của phương trình thì:
\(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2-2m\end{matrix}\right.\)
\(\Rightarrow (x_1+x_2)^2-2x_1x_2=4(m-1)^2-2(m^2-2m)\)
\(\Leftrightarrow x_1^2+x_2^2=2m^2-4m+4\)
\(\Leftrightarrow 8=2m^2-4m+4\Leftrightarrow m^2-2m-2=0\)
\(\Leftrightarrow m=1\pm \sqrt{3}\)
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>-m=4
hay m=-4
b: PTHĐGĐ là:
\(\dfrac{1}{2}x^2-2x+m-1=0\)
\(\Leftrightarrow x^2-4x+2m-2=0\)
\(\text{Δ}=\left(-4\right)^2-4\left(2m-2\right)\)
\(=16-8m+8=-8m+24\)
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
hay m<3
Theo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m-2\end{matrix}\right.\)
Theo đề, ta có: \(x_1\cdot x_2\left(x_1^2+x_2^2\right)=-48\)
=>\(\Leftrightarrow\left(2m-2\right)\cdot\left[4^2-2\left(2m-2\right)\right]=-48\)
\(\Leftrightarrow\left(m-1\right)\left(16-4m+4\right)=-24\)
\(\Leftrightarrow\left(m-1\right)\left(-4m+20\right)=-24\)
\(\Leftrightarrow\left(m-1\right)\left(m-5\right)=6\)
\(\Leftrightarrow m^2-6m-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3+\sqrt{10}\left(loại\right)\\m=3-\sqrt{10}\left(nhận\right)\end{matrix}\right.\)
\(\left|x_1-x_2\right|=2\sqrt{2}\Rightarrow x_1^2-2x_1x_2+x_2^2=8\Rightarrow\left(x_1+x_2\right)^2-4x_1x_2=8\) (1)
Để (P) cắt Ox tại 2 điểm thì phương trình \(mx^2-2\left(m+1\right)x+m+3=0\) có hai nghiệm phân biệt
\(\Rightarrow m\ne0\) và \(\Delta'=\left(m+1\right)^2-m\left(m+3\right)=1-m>0\Rightarrow m< 1;m\ne1\)
Theo Viet:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{m+3}{m}\end{matrix}\right.\)
Thế vào (1):
\(\left(\dfrac{2m+2}{m}\right)^2-4\left(\dfrac{m+3}{m}\right)=8\Leftrightarrow2m^2+m-1=0\) \(\Rightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{1}{2}\end{matrix}\right.\)
Ghi nhầm điều kiện xíu, cuối dòng 3 là \(m\ne0\) nhé, mình gõ nhầm số 1 vào