Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này là toán lp 9 mà :D
a/ Để...\(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne1\\2m+1=1\end{matrix}\right.\Leftrightarrow m=0\)
b/ Vì (d1) cắt...
Ta có PTHĐGĐ:
(m-3)x+2m+1=3x-2
Thay x= 2 vào có:
(m-3).2+2m+1= 3.2-2
\(\Leftrightarrow2m-6+2m+1=4\)
\(\Leftrightarrow m=\frac{9}{4}\) (tm)
c/ Vì...
Thay y= -3 vào y= x-5
\(\Rightarrow x=2\)
Thay x= 2; y= -3 vào (d1)
(m-3).2+2m+1= -3
\(\Leftrightarrow2m-6+2m+1=-3\)
\(\Leftrightarrow m=\frac{1}{2}\)
a: Vì (d) đi qua A(3;-4) và (0;2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=-4\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)
b: vì (d)//y=-4x+4 nên a=-4
Vậy:(d): y=-4x+b
Thay x=-2 và y=0 vào (d), ta được:
b+8=0
hay b=-8
a: Khi m=1 thì (P): y=x^2+4x+1+1=x^2+4x+2
Thay y=-1 vào (P), ta được:
x^2+4x+2=-1
=>x^2+4x+3=0
=>(x+1)(x+3)=0
=>x=-1 hoặc x=-3
b: Phươngtrình hoành độ giao điểm là:
x^2+(2m+2)x+m^2+m=0
Δ=(2m+2)^2-4(m^2+m)
=4m^2+8m+4-4m^2-4m=4m+4
Để (P) cắt Ox tại hai điểm phân biệt thì 4m+4>0
=>m>-1
\(\left|x_1-x_2\right|=\sqrt{5}\)
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)
=>(2m+2)^2-4(m^2+m)=5
=>4m^2+8m+4-4m^2-4m=5
=>4m+4=5
=>m=1/4
a: Thay x=3 và y=0 vào (1), ta được:
\(6-3m=0\)
hay m=2
Cặp đường thẳng cắt nhau tại điểm trên trục tung khi chúng có cùng tung độ gốc và có hệ số góc khác nhau.
Hai đường thẳng d 1 v à d 2 có hệ số góc khác nhau - 3 ≠ 3 và có cùng tung độ gốc là 1 nên hai đường thẳng này cắt nhau tại một điểm trên trục tung đó là điểm (0;1).