K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

\(a,\Leftrightarrow y=0;x=2\Leftrightarrow2m-2+m-2=0\Leftrightarrow m=\dfrac{4}{3}\)

\(b,\) PT giao Ox: \(\Leftrightarrow\left(m-1\right)x=2-m\Leftrightarrow x=\dfrac{2-m}{m-1}\Leftrightarrow A\left(\dfrac{2-m}{m-1};0\right)\Leftrightarrow OA=\left|\dfrac{2-m}{m-1}\right|\)

PT giao Oy: \(y=m-2\Leftrightarrow B\left(0;m-2\right)\Leftrightarrow OB=\left|m-2\right|\)

\(S_{OAB}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{2}OA\cdot OB=\dfrac{2}{3}\Leftrightarrow\left|\dfrac{2-m}{m-1}\cdot\left(m-2\right)\right|=\dfrac{4}{3}\\ \Leftrightarrow\left|\dfrac{-\left(m-2\right)^2}{m-1}\right|=\dfrac{4}{3}\Leftrightarrow\left[{}\begin{matrix}\dfrac{-\left(m-2\right)^2}{m-1}=\dfrac{4}{3}\left(1\right)\\\dfrac{-\left(m-2\right)^2}{1-m}=\dfrac{4}{3}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-3m^2+12m-12=4m-4\\ \Leftrightarrow3m^2-9m+9=0\\ \Leftrightarrow m\in\varnothing\\ \left(2\right)\Leftrightarrow-3m^2+12m-12=4-4m\\ \Leftrightarrow3m^2-16m+16=0\\ \Leftrightarrow\left[{}\begin{matrix}m=4\\m=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=4\\m=\dfrac{4}{3}\end{matrix}\right.\) thỏa đề

\(c,\) Gọi \(E\left(x_0;y_0\right)\) là điểm cần tìm

\(\Leftrightarrow\left(m-1\right)x_0+m-2=y_0\\ \Leftrightarrow mx_0+m-x_0-y_0-2=0\\ \Leftrightarrow m\left(x_o+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2-x_0=-1\end{matrix}\right.\Leftrightarrow E\left(-1;-1\right)\)

10 tháng 3 2018

lo n me may

10 tháng 4 2018

Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả. 
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1). 
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2. 
Giao điểm của hai đường tiệm cận là I(1; 2). 
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là 
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)² 
m = 1/(x - 1)² 
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là 
m' = dy/dx = -1/(x - 1)² 
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là 
mm' = -1 
-1/(x - 1)^4 = -1 
(x - 1)^4 = 1 
(x - 1)² = 1 
x - 1 = ±1 
x = 0 hay x = 2 
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)

23 tháng 12 2020

Để d song song với d' thì \(\left\{{}\begin{matrix}m^2=2\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\pm\sqrt{2}\\m\ne1\end{matrix}\right.\Leftrightarrow m\in\left\{\sqrt{2};-\sqrt{2}\right\}\)(1)

Để d' cắt trục hoành thì y=0

Thay y=0 vào hàm số \(y=m^2x+m\), ta được: 

\(m^2x+m=0\)

\(\Leftrightarrow x\cdot m^2=-m\)

\(\Leftrightarrow x=\dfrac{-m}{m^2}=\dfrac{-1}{m}\)

Để d' cắt trục hoành tại điểm có hoành độ âm thì \(x< 0\)

\(\Leftrightarrow\dfrac{-1}{m}< 0\)

\(\Leftrightarrow m>0\)(2)

Từ (1) và (2) suy ra \(m=\sqrt{2}\)

Vậy: Để d//d' và d' cắt trục hoành tại điểm có hoành độ âm thì \(m=\sqrt{2}\)

10 tháng 4 2018

Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả. 
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1). 
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2. 
Giao điểm của hai đường tiệm cận là I(1; 2). 
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là 
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)² 
m = 1/(x - 1)² 
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là 
m' = dy/dx = -1/(x - 1)² 
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là 
mm' = -1 
-1/(x - 1)^4 = -1 
(x - 1)^4 = 1 
(x - 1)² = 1 
x - 1 = ±1 
x = 0 hay x = 2 
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)

19 tháng 4 2020

2, Giao điểm của hai đường tiệm cận là I(1; 2). 
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là 
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)² 
m = 1/(x - 1)² 
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là 
m' = dy/dx = -1/(x - 1)² 
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là 
mm' = -1 
-1/(x - 1)^4 = -1 
(x - 1)^4 = 1 
(x - 1)² = 1 
x - 1 = ±1 
x = 0 hay x = 2 
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)

a: Khi m=1 thì (d): y=2x-1+2=2x+1

Khi m=1 thì (d'): y=-x-2

Phương trình hoành độ giao điểm là:

2x+1=-x-2

=>3x=-3

hay x=-1

=>y=-2+1=-1

b: Phương trình hoành độ giao điểm là:

\(2x-1+2m=-x-2m\)

=>3x-1+4m=0

=>3x=1-4m

=>x=(1-4m)/3

Để x dương thì 1-4m>0

hay m<1/4

12 tháng 11 2023

a: Để hàm số nghịch biến trên R thì m-2<0

=>m<2

b: Thay x=-3 và y=0 vào (d), ta được:

-3(m-2)+m+3=0

=>-3m+6+m+3=0

=>-2m+9=0

=>-2m=-9

=>\(m=\dfrac{9}{2}\)

c: Tọa độ giao điểm của y=-x+2 và y=2x-1 là:

\(\left\{{}\begin{matrix}2x-1=-x+2\\y=-x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=-x+2\end{matrix}\right.\)

=>x=1 và y=-1+2=1

Thay x=1 và y=1 vào (d), ta được:

m+2+m+3=1

=>2m+5=1

=>2m=-4

=>m=-4/2=-2

16 tháng 11 2023

a: Thay x=0 và y=2 vào (d), ta được:

\(0\left(m-1\right)+m=2\)

=>m+0=2

=>m=2

b: Thay x=-3 vào y=0 vào (d), ta được:

\(-3\left(m-1\right)+m=0\)

=>-3m+3+m=0

=>-2m+3=0

=>-2m=-3

=>\(m=\dfrac{3}{2}\)

c: Khi m=2 thì (d): \(y=\left(2-1\right)x+2=x+2\)

Khi m=3/2 thì (d): \(y=\left(\dfrac{3}{2}-1\right)x+\dfrac{3}{2}=\dfrac{1}{2}x+\dfrac{3}{2}\)

loading...

Tọa độ giao điểm của hai đường thẳng này là nghiệm của hệ phương trình sau:

\(\left\{{}\begin{matrix}x+2=\dfrac{1}{2}x+\dfrac{3}{2}\\y=x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-\dfrac{1}{2}x=\dfrac{3}{2}-2\\y=x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{2}x=-\dfrac{1}{2}\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1+2=1\end{matrix}\right.\)

30 tháng 11 2017

Xét phương trình hoành độ giao điểm của  d 1   v à   d 2

x   +   2   =   − 2 x   +   5 ⇔     x   =   1   ⇒   y   =   3   ⇒   d 1   ∩   d 2   t ạ i   M   ( 1 ;   3 )

Gọi H là chân đường vuông góc kẻ từ M tới Ox. Suy ra MH = 3

d ∩  Ox tại A (−2; 0) ⇒  OA = 2

d’ Ox tại B 5 2 ; 0      O B   =     5 2

  A B   =   O A   +   O B   =   2   + 5 2   =     9 2

SMAB = 1 2  AB.MH = 1 2 . 3 9 2 =   27 4 (đvdt)

Đáp án cần chọn là: D