Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$f(x_1)-f(x_2)=2018mx_1-2018mx_2=2018m(x_1-x_2)$
$=f(x_1-x_2)$ (đpcm)
$f(kx)=2018m(kx)=k.2018mx=kf(x)$ (đpcm)
a. ta có \(f\left(10x\right)=k.10x=10.kx=10f\left(x\right)\)
b. \(f\left(x_1+x_2\right)=k\left(x_1+x_2\right)=kx_1+kx_2=f\left(x_1\right)+f\left(x_2\right)\)
c.\(f\left(x_1-x_2\right)=k\left(x_1-x_2\right)=kx_1-kx_2=f\left(x_1\right)-f\left(x_2\right)\)
Theo c) \(f\left(\frac{5}{7}\right)=f\left(\frac{2}{7}+\frac{3}{7}\right)=f\left(\frac{2}{7}\right)+f\left(\frac{3}{7}\right)\)
\(f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}+\frac{1}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{1}{7}\right)=2.f\left(\frac{1}{7}\right)\)
\(f\left(\frac{3}{7}\right)=f\left(\frac{1}{7}+\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+2f\left(\frac{1}{7}\right)=3.f\left(\frac{1}{7}\right)\)
\(\implies\)\(f\left(\frac{5}{7}\right)=5.f\left(\frac{1}{7}\right)\) (1)
Theo b) \(f\left(\frac{1}{7}\right)=\frac{1}{7^2}.f\left(7\right)\) (2)
Theo c) \(f\left(7\right)=f\left(3+4\right)=f\left(3\right)+f\left(4\right)\)
\(=2.f\left(3\right)+f\left(1\right)\)
\(=6.f\left(1\right)+f\left(1\right)\)
\(=7.f\left(1\right)\)
Theo a)\(f\left(1\right)=1\)\(\implies\)\(f\left(7\right)=7\) (3)
Từ (1);(2);(3)
\(\implies\) \(f\left(\frac{5}{7}\right)=\frac{5}{7}\)
a) Ta có : \(f\left(x_1+x_2\right)=a\left(x_1+x_2\right)=ax_1+ax_2=f\left(x_1\right)+f\left(x_2\right)\)
b) Ta có : \(f\left(kx\right)=a\cdot k\cdot x=k\cdot ax=k\cdot f\left(x\right)\)
Xl nãy xóa quên viết lại: