Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)
\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)
Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)
b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)
\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)
\(a=4>0\) ; \(-\frac{b}{2a}=\frac{m}{2}\)
TH1: Nếu \(\frac{m}{2}\le-2\Rightarrow m\le-4\Rightarrow f\left(x\right)\) đồng biến trên \(\left[-2;0\right]\)
\(\Rightarrow f\left(x\right)_{min}=f\left(-2\right)=m^2+6m+16=3\)
\(\Leftrightarrow m^2+6m+13=0\) (vô nghiệm)
TH2: Nếu \(\frac{m}{2}\ge0\Leftrightarrow m\ge0\Rightarrow f\left(x\right)\) nghịch biến trên\(\left[-2;0\right]\)
\(\Rightarrow f\left(x\right)_{min}=f\left(0\right)=m^2-2m=3\)
\(\Leftrightarrow m^2-2m-3=0\Rightarrow\left[{}\begin{matrix}m=-1< 0\left(l\right)\\m=3\end{matrix}\right.\)
Th3: Nếu \(-2< \frac{m}{2}< 0\Rightarrow-4< m< 0\)
\(\Rightarrow f\left(x\right)_{min}=f\left(\frac{m}{2}\right)=4\left(\frac{m}{2}\right)^2-4m.\left(\frac{m}{2}\right)+m^2-2m=3\)
\(\Leftrightarrow-2m=3\Rightarrow m=-\frac{3}{2}\)
Vậy \(\left[{}\begin{matrix}m=3\\m=-\frac{3}{2}\end{matrix}\right.\)