Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Hàm số f(x) xác định trên D⊆ R
Điểm
x
0
∈ D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b)⊂ D sao cho
x
0
∈ (a;b) và f(
x
0
)>f(x),∀x ∈ (a,b)∖{
x
0
}.
Đáp án A
Hàm số f(x) xác định trên D⊆ R
Điểm xo∈ D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b)⊂ D sao cho xo∈ (a;b) và f(xo)>f(x),∀x ∈ (a,b)∖{xo}.
Đáp án là C
I.Sai ví dụ hàm số y = x 3 đồng biến trên
(−¥; +¥) nhưng y' ³ 0, "x Î (−¥; +¥)
II.Đúng
III.Đúng
Phương pháp: Sử dụng phương pháp đổi biến, đặt t = u(x)
Cách giải:
Đặt
Đổi cận
Đặt t = a + b - x nên dx = -dt
Đổi cận: x = a nên t = b; x = b nên t = a
Khi đó :
∫ a b x f x d x = ∫ a b x f a + b - x d x = - ∫ b a a + b - t f t d t = ∫ a b a + b - t f t d t = a + b ∫ a b f t d t - ∫ a b t f t = a + b ∫ a b f x d t - ∫ a b x f x
Do đó ∫ a b x f x d x = a + b 2 ∫ a b f x d x
Đáp án D
B
Từ đồ thị của hàm số f"(x) ta có bảng biến
thiên của hàm số f'(x) như sau:
Đáp án B
Hàm số y = f x liên tục và luôn nghịch biến trên a ; b ⇒ M a x a ; b f x = f a