Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Ta có f'(x)= 0
(Trong đó -2 < a < 0 < b < c < 2)
Ta có bảng xét dấuDựa vào bảng xét dấu ta thấy hàm số y = f(x) có 3 cực trị.
Dựa vào đồ thị hàm số ta thấy hàm số có 3 điểm cực trị
Xét hàm số có
.
.
Phương trình có 2 nghiệm đơn phân biệt.
Phương trình có 2 nghiệm đơn phân biệt.
Phương trình có 2 nghiệm đơn phân biệt.
Các nghiệm này không trùng nhau, do đó phương trình y’ = 0 có 9 nghiệm phân biệt (không trùng nhau),
Các nghiệm đều là nghiệm đơn. Do vậy hàm số có 9 điểm cực trị
Chọn D
Chọn A
Ta có: g(x) = f(x-2017) - 2018x + 2019.
Nhận xét: tịnh tiến đồ thị hàm số y = f'(x) sang bên phải theo phương của trục hoành 2017 đơn vị ta được đồ thị hàm số y = f'(x-2017) . Do đó, số nghiệm của phương trình f'(x) = 2018 bằng số nghiệm của phương trình (*).
Dựa vào đồ thị ta thấy phương trình (*) có nghiệm đơn duy nhất hay hàm số đã cho có duy nhất 1 điểm cực trị.
Chọn D
Xét hàm số .
Có
.
Ta lại có thì . Do đó thì .
thì . Do đó thì .
Từ đó ta có bảng biến thiên của như sau
Dựa vào bảng biến thiên, ta có
I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.
II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.
III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.
IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.
V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.
Vậy có hai mệnh đề đúng.
ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????
Chọn D
Ta có
.
Suy ra đồ thị của hàm số y= g’(x) là phép tịnh tiến đồ thị hàm số y= f’(x) theo phương song song với trục Oy xuống dưới đơn vị.
Ta có và dựa vào đồ thị của hàm số y= f’(x) , ta suy ra
đồ thị của hàm số y= g’(x) cắt trục hoành tại 4 điểm.
=> Hàm số y= g( x) có 4 cực trị .
Đáp án D