K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

Đáp án là B

15 tháng 12 2017

24 tháng 7 2019

Chọn A.

Tập xác định của hàm số y=f(x) là D=R Từ đồ thị đã cho ta có: f ' ' x = 0 ⇔ x = - 1 x = 2 .  

Bảng biến thiên.


Dựa vào bảng biến thiên của hàm số y=f(x) ta nhận thấy hàm số y=f(x) đồng biến trên khoảng  - 1 ; + ∞ .

25 tháng 11 2019

Chọn đáp án D

Phương pháp

Sử dụng cách đọc bảng biến thiên để suy ra khoảng đồng biến của hàm số.

Hàm số liên tục trên (a;b) có y’>0 với x thuộc (a;b) thì hàm số đồng biến trên (a;b).

Cách giải

Từ BBT ta có hàm số đồng biến trên các khoảng (-∞;-1) và (0;1).

27 tháng 7 2019

Hàm số nghịch biến nếu f’(x)<0 Quan sát đồ thị y=f’(x), chọn đáp án A. Chọn A

30 tháng 7 2019

Ta có 

= TH1:  Do đó hàm số nghịch biến trên  (-4;-2)

= TH2 nên hàm số chỉ nghịch biến trên khoảng (2-2a;4) chứ không nghịch biến trên toàn khoảng (2;4)

Vậy hàm số  nghịch biến trên (-4;-2)

Chọn A.

20 tháng 2 2019

Có y ' = 0 ⇔ [ - 1 < x < 0 0 < x < 1

Đối chiếu các đáp án chọn A.

Chọn đáp án A.

12 tháng 1 2018

Chọn D.

Dựa vào bảng biến thiên suy ra hàm số nghịch biến trên (0;1)

3 tháng 12 2018

Chọn A.

Từ bẳng biến thiên suy ra hàm số đã cho đồng biến trên các khoảng (-∞;-1) và (0;1)