K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

Đáp án C

A sai vì hàm số chỉ đạt cực trị tại x = 2.

B sai vì trên (0; 2) hàm số đồng biến.

C đúng vì hàm số chỉ đạt cực trị tại x = 2

D sai vì l i m x → + ∞ = + ∞ nên hàm số không có giá trị lớn nhất.

22 tháng 8 2019

Chọn C.

Phương pháp: Dựa vào bảng biến thiên để xác định tiệm cận, cực trị, giá trị lớn nhất, giá trị nhỏ nhất.

Cách giải: Dựa vào bảng biến thiên dễ thấy đồ thị hàm số có tiệm cận ngang y = 0 và hai tiệm cận đứng x = 2, x = -2. Vậy (I) sai và (IV) đúng.

19 tháng 5 2018

Đáp án C

Ta có f ' x = 0 ⇔ x = 1 ; 2 ; 3 ⇒  hàm số có 3 điểm cực trị

Lại có g x = f x - m - 2018 ⇒ g ' x = f ' x = 0 ⇒  có 3 nghiệm phân biệt

Suy ra phương trình f x = m + 2018  có nhiều nhất 4 nghiệm

Xét  y = f x + 1 ⇒ y ' = f ' x + 1 < 0 ⇔ [ x + 1 ∈ 1 ; 2 x + 1 ∈ 3 ; + ∞ ⇔ [ 0 < x < 1 x > 2

Suy ra hàm số y = f(x + 1) nghịch biến trên khoảng (0;1).

18 tháng 9 2017

Đáp án B

Phương pháp: Từ đồ thị hàm số y = f’(x) lập BBT của đồ thị hàm số y = f(x) và kết luận.

Cách giải: Ta có 

BBT:

Từ BBT ta thấy (I) đúng, (II) sai.

Với  => Hàm số y = f(x+1) nghịch biến trên khoảng (0;1).

=>(III) đúng.

Vậy có hai khẳng định đúng

25 tháng 5 2018

19 tháng 1 2017

Đáp án B.

Ta có: Tập xác định của hàm số  y = x 2 3 + 2017  là R nên  y ' = 2 3 x 3

Ta có bảng biến thiên

(I) sai vì hàm số chỉ đồng biến trên  0 ; + ∞ ;

(II) đúng là hàm số đạt cực tiểu x = 0; EM NHÌN KĨ BẢNG BIẾN THIÊN NHÉ!

(III) sai vì giá trị nhỏ nhất của hàm số là 2017

(IV) sai vì hàm số nghịch biến trên  − ∞ ; 0

Lỗi sai

Ø  Có bạn sẽ nhìn nhanh và nhầm  y ' = 2 3 x 3 > 0  và kết luận là I đúng

Ø  Có bạn sẽ không xét tại x = 0 vì tại đó y' không xác định. Hàm số vẫn đạt cực tiểu tại x = 0. Ta xét các điểm cực trị làm y' = 0 hoặc y' không xác định.

 

28 tháng 12 2017

Đáp án B

30 tháng 4 2018

Chọn đáp án B

Phương pháp

Dựa vào đồ thị hàm số xác định các khoảng đơn điệu, các điểm cực trị và GTLN, GTNN của hàm số.

Cách giải

Dựa vào đồ thị hàm số ta thấy hàm số đã cho

+) Đồng biến trên (-1;0) và (1;+∞), nghịch biến trên (-∞;-1) và (0;1).

+) Hàm số có 3 điểm cực trị.

+) Hàm số không có GTLN.

Do đó các mệnh đề (I), (III) đúng.

19 tháng 10 2018

Đáp án A

2 tháng 8 2018

Chọn A.

(I) sai f xđ trên R

(II) sai hs có 2 điểm cực trị

(III) ,(IV) đúng

7 tháng 7 2017

Đáp án D

Dựa vào hình vẽ, ta thấy rằng

+ Đồ thị hàm số f '(x) cắt Ox tại 3 điểm phân biệt x 1 - 1 ; 0 , x 2 0 ; 1 , x 3 2 ; 3  

Và f '(x) đổi dấu từ - → +  khi đi qua x 1 , x 3 ⇒  Hàm số có 2 điểm cực tiểu, 1 điểm cực đại

+ Hàm số y = f(x) nghịch biến trên khoảng - 1 ; x 1  đồng biến trên x 1 ; x 2  (1) sai

+ Hàm số y = f(x) nghịch biến trên khoảng x 2 ; x 3  (chứa khoảng (1;2)), đồng biến trên khoảng x 3 ; 5  (chứa khoảng (3;5)) ⇒ 2 ; 3  đúng

Vậy mệnh đề 2,3 đúng và 1, 4 sai.