Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\dfrac{1}{3}\left(m-1\right)x^3-\left(m-1\right)x^2+\left(m+3\right)x-2\)
\(y'=\)\(x^2\left(m-1\right)-2x\left(m-1\right)+m+3\)
a)\(y'=0\)\(\Leftrightarrow x^2\left(m-1\right)-2x\left(m-1\right)+m+3=0\)
Xét m=1 => pt tt: 3=0 (vô lí)
=> \(m\ne1\)
Để y'=0 có hai nghiệm pb cùng dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-16m+16>0\\\dfrac{m+3}{m-1}>0\end{matrix}\right.\)\(\Rightarrow m< -3\)
b)y'=0 có hai nghiệm \(\Leftrightarrow\Delta\ge0\) \(\Leftrightarrow m\le-3\)
Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m-1}=2\\x_1x_2=\dfrac{m+3}{m-1}\end{matrix}\right.\)
Có x12+x22=4
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\)\(4-\dfrac{2\left(m+3\right)}{m-1}=4\)
\(\Leftrightarrow m=-3\) (tm)
Vậy m=-3
(đúng không ạ?)
\(y'=-3x^2-6mx+6m=3\left(-x^2-2mx+2m\right)\)
Đặt \(f\left(x\right)=-x^2-2mx+2m\)
a. \(y'=0\) có 2 nghiệm \(x_1\le x_2< 1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2+2m\ge0\\-f\left(1\right)=1>0\\\dfrac{x_1+x_2}{2}=-2m< 1\end{matrix}\right.\) \(\Rightarrow m\le-2\)
b. \(y'=0\) có 2 nghiệm cùng dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2+2m\ge0\\x_1x_2=-2m>0\\\end{matrix}\right.\) \(\Rightarrow m\le-2\)
c. \(\Delta'=m^2+2m>0\Rightarrow\left\{{}\begin{matrix}m>0\\m< -2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1-x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+1}{2}\\x_2=\dfrac{-2m-1}{2}\end{matrix}\right.\)
\(x_1x_2=-2m\Rightarrow\left(\dfrac{-2m+1}{2}\right)\left(\dfrac{-2m-1}{2}\right)=-2m\)
\(\Leftrightarrow4m^2-1=-8m\Rightarrow4m^2+8m-1=0\Rightarrow...\)
d.
\(y'< 0\) ;\(\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\\\Delta'=m^2+2m< 0\end{matrix}\right.\)
\(\Leftrightarrow-2< m< 0\)
e.
\(y'< 0\) ; \(\forall x< 0\)
\(\Leftrightarrow-x^2-2mx+2m< 0\) ;\(\forall x< 0\)
TH1: \(\Delta'=m^2+2m< 0\Leftrightarrow-2< m< 0\)
TH2: \(\left\{{}\begin{matrix}\Delta'\ge0\\0< x_1\le x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m\ge0\\x_1+x_2=-2m>0\\x_1x_2=-2m>0\end{matrix}\right.\) \(\Rightarrow m\le-2\)
a: y'=2/3*3x^2-2x(m+1)+3(m+1)
=x^2-x(2m+2)+3m+3
y'=0
Δ=(2m+2)^2-4(3m+3)=4m^2+8m+4-12m-12=4m^2-4m-8
Để phương trình có hai nghiệm thì 4m^2-4m-8>=0
=>m^2-m-2>=0
=>m>=2 hoặc m<=-1
b: y'=0 có hai nghiệm trái dấu
=>3m+3<0
=>m<-1
\(f\left(x\right)=ax^2+bx+c\) có 2 nghiệm thỏa mãn \(x_1< k< x_2\) khi và chỉ khi \(a.f\left(k\right)< 0\)
Đây là nguyên lý của tam thức bậc 2 từ lớp 10 thì phải
Phương Anh Đỗ
Nhìn đề đoán là \(y=\frac{1}{3}mx^3+mx^2+\left(m+1\right)x+2\)
\(y'=mx^2+2mx+m+1\)
a/ Với \(m=0\) thỏa mãn
Với \(m\ne0\) để \(y'>0;\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=m^2-m\left(m+1\right)< 0\end{matrix}\right.\) \(\Rightarrow m>0\)
b/ Để \(y'=0\) có 2 nghiệm trái dấu
\(\Leftrightarrow m\left(m+1\right)< 0\Rightarrow-1< m< 0\)
c/ \(\left\{{}\begin{matrix}\Delta'=-m>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\frac{m+1}{m}>0\end{matrix}\right.\) \(\Rightarrow m< -1\)
d/ \(x_1< 1< x_2\)
\(\Rightarrow m.y'\left(1\right)< 0\)
\(\Leftrightarrow m\left(m+2m+m+1\right)< 0\)
\(\Leftrightarrow m\left(4m+1\right)< 0\Rightarrow-\frac{1}{4}< m< 0\)