\(y=f\left(x\right)=\frac{1}{2x-2}\),Tìm điều kiện của x để hàm số 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017
x khác 1
25 tháng 4 2020

\(y=f\left(x\right)=\frac{1}{2x-2}\)

Để \(y=f\left(x\right)\)xác định => \(2x-2\ne0\)

=> \(2x\ne2\)

=> \(x\ne1\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2024

Lời giải:
Để hàm số $f(x)$ xác định thì:

$3x-2\neq 0$

Hay $x\neq \frac{2}{3}$

14 tháng 7 2020

Câu a mình làm đc r, nhờ m.n làm hộ mình câu b và ý nhỏ này nx nhé, cũng nằm trong bài.

c) Tìm \(x\in Z\) để hàm số y=f(x) đạt GTNN? Tính giá trị đó.

8 tháng 3 2017

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)

mà 3^6/9-81=0  => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0

4 tháng 1 2021

\(f\left(243\right)=f\left(3\cdot81\right)=-2\cdot f\left(3\cdot27\right)=4\cdot f\left(3\cdot9\right)=-8\cdot f\left(3\cdot3\right)=16\cdot\left(-2\right)=-32\)

21 tháng 9 2017

a) ĐK: \(x\left(x-2\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

TXĐ: \(D=R\backslash\left\{0;2\right\}\)

b) ĐK : \(\hept{\begin{cases}x^2-x\ne0\\x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x-1\right)\ne0\\x\ne1\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}}\)

TXĐ : \(D=R\backslash\left\{0;1\right\}\)

4 tháng 9 2019

\(f\left(x\right)=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow f\left(1\right)+f\left(2\right)+....+f\left(x\right)=1-\frac{1}{2^2}+\frac{1}{2^2}-....-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

\(\Leftrightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-20+\left(x+1\right)=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

Dat:\(x+1=a\Rightarrow\frac{\left(2y+1\right)a^3-20a^2-1}{a^2}=\frac{a^2-1}{a^2}\Leftrightarrow\left(2y+1\right)a^3-20a^2-1=a^2-1\)

\(\Leftrightarrow\left(2y+1\right)a^3-20a^2=a^2\Leftrightarrow\left(2ay+a\right)-20=1\left(coi:x=-1cophailanghiemko\right)\)

\(\Leftrightarrow2ay+a=21\Leftrightarrow a\left(2y+1\right)=21\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)

16 tháng 4 2019

Ta có: 

f(x)=\(\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

 \(\Rightarrow f\left(1\right)=1-\frac{1}{2^2};f\left(2\right)=\frac{1}{2^2}-\frac{1}{3^2};...;f\left(x\right)=\frac{1}{x^2}-\frac{1}{\left(x-1\right)^2}\)

=> \(S=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}=1-\frac{1}{\left(x+1\right)^2}\)

Theo bài ra ta có :

\(1-\frac{1}{\left(x+1\right)^2}=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)

<=> \(1-\frac{1}{\left(x+1\right)^2}=2y\left(x+1\right)-\frac{1}{\left(x+1\right)^2}-19+x\)

<=> 1=2y(x+1)-19+x

<=> (2y+1)(x+1)=21

x, y thuộc N => 2y+1, x+1 thuộc N

Ta có bảng

x+131721
2y+172131
x20620
y31010

Vậy....

17 tháng 4 2019

Cô Linh Chi:

phần bảng x không có giá trị bằng 0

Nếu x = 0 thì hàm số f (x) có giá trị bằng 0