K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 1

Hàm số xác định trên R khi và chỉ khi:

\(sin^2x+\left(2m-3\right)cosx+3m-2>0;\forall x\in R\)

\(\Leftrightarrow-cos^2x+\left(2m-3\right)cosx+3m-1>0\)

\(\Leftrightarrow t^2-\left(2m-3\right)t-3m+1< 0;\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow t^2+3t+1< m\left(2t+3\right)\)

\(\Leftrightarrow\dfrac{t^2+3t+1}{2t+3}< m\) (do \(2t+3>0;\forall t\in\left[-1;1\right]\))

\(\Leftrightarrow m>\max\limits_{\left[-1;1\right]}\dfrac{t^2+3t+1}{2t+3}\)

Ta có: \(\dfrac{t^2+3t+1}{2t+3}=\dfrac{t^2+t-2+2t+3}{2t+3}=\dfrac{\left(t-1\right)\left(t+2\right)}{2t+3}+1\)

Do \(-1\le t\le1\Rightarrow\dfrac{\left(t-1\right)\left(t+2\right)}{2t+3}\le0\)

\(\Rightarrow\max\limits_{\left[-1;1\right]}\dfrac{t^2+3t+1}{2t+3}=1\)

\(\Rightarrow m>1\)

8 tháng 1

Anh giúp em ạ! 

https://hoc24.vn/cau-hoi/tim-m-de-ham-so-sqrtsin4xcos4x4sinxcosxm-5-xac-dinh-tren-r.8744969085814

NV
24 tháng 12 2020

\(\Leftrightarrow\left(2m-1\right)sinx-\left(m+2\right)cosx+4m-3\ge0\) ;\(\forall x\)

\(\Leftrightarrow m\ge\dfrac{sinx+2cosx+3}{2sinx-cosx+4}=P\)

\(\Leftrightarrow m\ge P_{max}\)

Ta có: \(P=\dfrac{sinx+2cosx+3}{2sinx-cosx+4}\Leftrightarrow\left(2P-1\right)sinx-\left(P+2\right)cosx=3-4P\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(2P-1\right)^2+\left(P+2\right)^2\ge\left(3-4P\right)^2\)

\(\Leftrightarrow11P^2-24P+4\le0\)

\(\Rightarrow\dfrac{2}{11}\le P\le2\)

\(\Rightarrow m\ge2\)

1 tháng 9 2021

y = \(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\)

y = \(\dfrac{sin^2x}{sinx.cosx-cos^2x}+\dfrac{1}{4}=\dfrac{\dfrac{sin^2x}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}-1}+\dfrac{1}{4}\)

y = \(\dfrac{tan^2x}{tanx-1}+\dfrac{1}{4}\)

y = \(\dfrac{4tan^2x+tanx-1}{4tanx-4}\). Đặt t =  tanx. Do x ∈ \(\left(\dfrac{\pi}{4};\dfrac{\pi}{2}\right)\) nên t ∈ (1 ; +\(\infty\))\

Ta đươc hàm số f(t) = \(\dfrac{4t^2+t-1}{4t-4}\)

⇒ ymin = \(\dfrac{17}{4}\) khi t = 2. hay x = arctan(2) + kπ 

30 tháng 6 2021

Đặt \(t=cosx;t\in\left[-1;1\right]\)

Để hàm số có tập xác định R

\(\Leftrightarrow cosx^2-\left(2+m\right)cosx+2m\ge0;\forall x\)

\(\Leftrightarrow t^2-\left(2+m\right)t+2m\ge0\) với mọi \(t\in\left[-1;1\right]\)

Đặt \(f\left(t\right)=t^2-\left(2+m\right)t+2m\)\(I\left(\dfrac{2+m}{2};f\left(\dfrac{2+m}{2}\right)\right)\)

TH1: \(\dfrac{2+m}{2}< -1\) \(\Leftrightarrow m< -4\)

Để \(f\left(t\right)\ge0;\forall t\in\left[-1;1\right]\) \(\Leftrightarrow\)\(f\left(t\right)_{min}=f\left(-1\right)\ge0\) \(\Leftrightarrow3+3m\ge0\Leftrightarrow m\ge-1\)(ktm đk)

TH2: \(-1\le\dfrac{m+2}{2}\le1\)\(\Leftrightarrow-4\le m\le0\)

Để \(f\left(t\right)\ge0;\forall t\in\left[-1;1\right]\) \(\Leftrightarrow f\left(t\right)_{min}=f\left(\dfrac{2+m}{2}\right)\ge0\)\(\Leftrightarrow-m^2+4m-4\ge0\)\(\Leftrightarrow m=2\) (ktm đk)

TH3:\(\dfrac{m+2}{2}>1\) \(\Leftrightarrow m>0\)

Để \(f\left(t\right)\ge0;\forall t\in\left[-1;1\right]\)\(\Leftrightarrow f\left(t\right)_{min}=f\left(1\right)\ge0\)\(\Leftrightarrow m-1\ge0\Leftrightarrow m\ge1\)

Kết hợp cả ba TH \(\Rightarrow m\ge1\)

Vậy...

NV
30 tháng 6 2021

Đơn giản hơn:

\(t^2-\left(m+2\right)t+2m\ge0\) ; \(\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow t\left(t-2\right)-m\left(t-2\right)\ge0\)

\(\Leftrightarrow\left(t-m\right)\left(t-2\right)\ge0\) (1)

Do \(t-2< 0\) ; \(\forall t\in\left[-1;1\right]\) nên (1) tương đương:

\(t-m\le0\)

\(\Leftrightarrow m\ge t\) ; \(\forall t\in\left[-1;1\right]\)

\(\Rightarrow m\ge1\)

28 tháng 8 2021

1.

\(3cos2x-7=2m\)

\(\Leftrightarrow cos2x=\dfrac{2m-7}{3}\)

Phương trình đã cho có nghiệm khi:

\(-1\le\dfrac{2m-7}{3}\le1\)

\(\Leftrightarrow2\le m\le5\)

28 tháng 8 2021

2.

\(2cos^2x-\sqrt{3}cosx=0\)

\(\Leftrightarrow cosx\left(2cosx-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\) Có 4 nghiệm \(\dfrac{\pi}{2};\dfrac{3\pi}{2};\dfrac{\pi}{6};\dfrac{11\pi}{6}\) thuộc đoạn \(\left[0;2\pi\right]\)

NM
23 tháng 8 2021

để hàm số xác định với mọi x thuộc R thì 

\(2m\cos^2x+\left(2-m\right)\cos x+4m-1\ge0\Leftrightarrow m\left(2cos^2x-cosx+4\right)\ge1-2cosx\)

mà \(2cos^2x-cosx+4>0\) nên :

\(m\ge\frac{1-2cosx}{2cos^2x-cosx+4}\)\(\Leftrightarrow\)\(m\ge max\left(\frac{1-2cosx}{2cos^2x-cosx+4}\right)=\frac{3}{7}\)

vậy điều kiện của m là : \(m\ge\frac{3}{7}\)

NV
30 tháng 6 2021

a.

\(\Leftrightarrow m-cosx\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\ge max\left(cosx\right)\)

\(\Leftrightarrow m\ge1\)

b.

\(\Leftrightarrow2sinx-m\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\le2sinx\) ; \(\forall x\)

\(\Leftrightarrow m\le\min\limits_{x\in R}\left(2sinx\right)\)

\(\Leftrightarrow m\le-2\)

c.

\(\Leftrightarrow cosx+m\ne0\) ; \(\forall x\)

\(\Leftrightarrow\left[{}\begin{matrix}m>\max\limits_R\left(cosx\right)\\m< \min\limits_R\left(cosx\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)

6 tháng 6 2018

NV
9 tháng 1

\(2sinx+5cosx-13< 0;\forall x\)

\(\Rightarrow\) Hàm xác định trên R khi và chỉ khi:

\(2m.sinx+\left(2m-1\right)cosx-m< 0\) ;\(\forall x\) 

\(\Leftrightarrow2m.sinx+\left(2m-1\right).cosx< m\)\(\forall x\)

\(\Rightarrow\dfrac{m}{\sqrt{\left(2m\right)^2+\left(2m-1\right)^2}}>1\)

\(\Rightarrow m\in\varnothing\)

9 tháng 1

Anh dùng bunhia ạ anh, ở dòng suy ra anh làm như nào vậy ạ