K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:

a. Hình vẽ:

b. Vì điểm $A$ thuộc đths nên $A$ có tọa độ $(a,3a)$

$OA=\sqrt{a^2+(3a)^2}=2\sqrt{10}$

$\sqrt{10a^2}=2\sqrt{10}$

$10a^2=400$

$a=\pm 2$

Vậy tọa độ điểm A là $(2,6)$ hoặc $(-2,-6)$

27 tháng 11 2016

b/ Vì A thuộc hàm số nên tọa độ A(t; - 3t)

Theo đề bài thì ta có 

t2 + 9t2 = 10

<=> t2 = 1

<=> t = (1; - 1)

Vậy tọa độ A(1; - 3) hoặc A(- 1; 3)

28 tháng 11 2016

Câu này câu a/ vẽ đồ thị nên bạn tự làm nhé

19 tháng 6 2019

1, \(x=13-4\sqrt{10}=\frac{26-8\sqrt{10}}{2}=\frac{10-2.4.\sqrt{10}+16}{2}=\frac{\left(\sqrt{10}-4\right)^2}{2}\)

Ta có: \(Q=x+\sqrt{5x}-2\sqrt{2x}-2\sqrt{10}\)

\(=\sqrt{x}\left(\sqrt{x}+\sqrt{5}\right)-2\sqrt{2}\left(\sqrt{x}+\sqrt{5}\right)\)

\(=\left(\sqrt{x}+\sqrt{5}\right)\left(\sqrt{x}-2\sqrt{2}\right)\)

\(=\left(\frac{4-\sqrt{10}}{\sqrt{2}}+\sqrt{5}\right)\left(\frac{4-\sqrt{10}}{\sqrt{2}}-2\sqrt{2}\right)\)

\(=\left(2\sqrt{2}-\sqrt{5}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}-2\sqrt{2}\right)\)

\(=2\sqrt{2}.\left(-\sqrt{5}\right)=-2\sqrt{10}\)

19 tháng 6 2019

2, a,  Để đồ thị h/s  đi qua gốc tọa độ thì x=y=0

Ta có: \(-2m-1=0\Leftrightarrow m=\frac{-1}{2}\)

b, giao điểm của h/s y=x-2m-1 với trục hoành A(2m+1;0) với trục tung B(0;-2m-1)

Có: OA=2m+1; OB=|-2m-1|=2m+1

Áp dụng hệ thức lượng trong tam giác vuông coS:

\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{\left(2m+1\right)^2}+\frac{1}{\left(2m+1\right)^2}=\frac{2}{\left(2m+1\right)^2}\)

\(\Leftrightarrow\frac{\left(2m+1\right)^2}{2}=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)

\(\Leftrightarrow\left(2m+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2m+1=1\\2m+1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=-1\end{cases}}}\)

c, Hoành độ trung điểm I của AB là: \(x_I=\frac{x_A+x_B}{2}=\frac{2m+1}{2}\)

Tung độ trung điểm I của AB: \(y_I=\frac{y_A+y_B}{2}=\frac{-\left(2m+1\right)}{2}\)

Ta có: \(y_I=-x_I\)=> quỹ tích trung điểm I của AB là đường thẳng y=-x

23 tháng 11 2020

a,

b, Giả sử điểm A có tọa độ \(A\left(x_0;y_0\right)\)

Ta có \(OA=\sqrt{x_0^2+y_0^2}=2\sqrt{10}\Leftrightarrow x_0^2+y_0^2=40\)

\(\Leftrightarrow x_0^2+9x_0^2=40\)

\(\Leftrightarrow x_0=\pm2\)

\(x_0=2\Rightarrow y_0=6\Rightarrow A\left(2;6\right)\)

\(x_0=-2\Rightarrow y_0=-6\Rightarrow A\left(-2;-6\right)\)

31 tháng 5 2017

Hàm số bậc nhất

Hàm số bậc nhất