Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a. Để $(d)$ đi qua $A(-1;3)$ thì:
$y_A=2x_A+m\Leftrightarrow 3=2(-1)+m$
$\Leftrightarrow m=5$
b. Để $(d)$ đi qua $B(\sqrt{2}; -5\sqrt{2})$ thì:
$y_B=2x_B+m$
$\Leftrightarrow -5\sqrt{2}=2\sqrt{2}+m$
$\Leftrightarrow m=-7\sqrt{2}$
Xét pt hoành độ gđ của (P) và (d) có:
\(2x^2=2x+m\)
\(\Leftrightarrow2x^2-2x-m=0\) (1)
Để (d) cắt (P) tại hai điểm nằm trong góc phần tư thứ 1
<=> pt (1) có hai nghiệm pb dương (không cần xét tung độ bởi tung độ luôn dương)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4-4.2.\left(-m\right)>0\\1>0\left(lđ\right)\\-\dfrac{m}{2}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m< 0\end{matrix}\right.\)
\(\Rightarrow\)\(-\dfrac{1}{2}< m< 0\)
Xét pt hoành độ giao điểm:
(m - 3)x + 2m - 4 = -x + 5
\(\Leftrightarrow\) mx - 3x + 2m - 4 = -x + 5
\(\Leftrightarrow\) m(x + 2) = 2x + 9
\(\Leftrightarrow\) m = \(\dfrac{2x+9}{x+2}\)
Vì 2 đường thẳng cắt nhau tại 1 điểm nằm trong góc phần tư thứ 1
\(\Rightarrow\) x > 0
\(\Leftrightarrow\) 2x + 9 > 9; x + 2 > 2
\(\Rightarrow\) \(\dfrac{2x+9}{x+2}>\dfrac{9}{2}\)
\(\Leftrightarrow\) m \(>\dfrac{9}{2}\)
Vậy \(m>\dfrac{9}{2}\)
Chúc bn học tốt!
a) Khi dó thì m - 2 =1 và m + 3 ≠ 3 ⇨ m = 3 và m ≠ 0 => m = 3 thỏa mãn.
b) Khi đó x = 0 và y = 4 => m + 3 = 4 => m =1
2) Phương trình hoành độ giao điểm là:
3x+m=2x-1
\(\Leftrightarrow3x-2x=-1-m\)
\(\Leftrightarrow x=-m-1\)
Để (*) cắt đồ thị của hàm số y=2x-1 tại điểm nằm trên góc vuông phần tư thứ IV thì \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m-1>0\\2x-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-m>1\\2\left(-m-1\right)-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-2m-2-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-2m< 3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -1\\m>\dfrac{-3}{2}\end{matrix}\right.\Leftrightarrow-\dfrac{3}{2}< m< -1\)
Tọa độ giao điểm là:
2x+m=3x-2 và y=3x-2
=>x=m+2 và y=3(m+2)-2=3m+4
Để (d) cắt (d1) tại góc phần tư thứ (IV) thì m+2>0 và 3m+4<0
=>m>-2 và m<-4/3
=>-2<m<-4/3
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
ai giúp mình với ạ cảm ơn nhiều
không biết lm nên ké vs