Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm: x 2 − 2 x − 2 = x + m ⇔ x 2 − 3 x − 2 − m = 0
(d) cắt (P) tại hai điểm phân biệt A, B ⇔ Δ > 0 ⇔ 17 + 4 m > 0 ⇔ m > − 17 4
Giả sử (*) có hai nghiệm x 1 , x 2 thì x 1 + x 2 = − b a = 3 x 1 . x 2 = c a = − m − 2
= 18 − 4 ( − 2 − m ) + 6 m + 2 m 2 = 2 m 2 + 10 m + 26 = 2 m + 5 2 2 + 27 2 ≥ 27 2 với m > − 17 4
Vậy giá trị nhỏ nhất của O A 2 + O B 2 là 27 2 khi m = − 5 2
Đáp án cần chọn là: A
- Xét phương trình hoành độ giao điểm :\(x^2-2x+2=x+m\)
\(\Leftrightarrow x^2-3x+2-m=0\)
Có \(\Delta=b^2-4ac=9-4\left(2-m\right)=9-8+4m=4m+1\)
- Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\) \(\Leftrightarrow m>-\dfrac{1}{4}\left(1\right)\)
Theo viet : \(\left\{{}\begin{matrix}x_a+x_b=3\\x_ax_b=2-m\end{matrix}\right.\)
- Ta có : \(OA^2+OB^2=10\)
\(\Leftrightarrow x^2_A+y^2_A+x_B^2+y^2_B=10\)
\(\Leftrightarrow x^2_a+x^2_b+\left(x_a+m\right)^2+\left(x_b+m\right)^2=10\)
\(\Leftrightarrow2x^2_a+2x^2_b+2m\left(x_a+x_b\right)+2m^2=10\)
\(\Leftrightarrow2\left(x_a+x_b\right)^2-4x_ax_b+2m\left(x_a+x_b\right)+2m^2-10=0\)
\(\Leftrightarrow18-4\left(2-m\right)+6m+2m^2-10=0\)
\(\Leftrightarrow2m^2+10m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)
- Kết hợp ĐK (1) => m = 0 ( TM )
Vậy ...
Phương trình hoành độ giao điểm:
\(x^2+3x=x+m^2\Leftrightarrow x^2+2x-m^2=0\)
Pt đã cho luôn có 2 nghiệm pb
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2\end{matrix}\right.\)
Do I là trung điểm đoạn AB \(\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{x_A+m^2+x_B+m^2}{2}=m^2-1\end{matrix}\right.\)
Mà I thuộc d'
\(\Leftrightarrow y_I=2x_I+3\Leftrightarrow m^2-1=2.\left(-1\right)+3\)
\(\Leftrightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)
\(\Rightarrow\sum m^2=4\)
Phương trình hoành độ giao điểm:
\(2x^2+\left(3m-4\right)x-2=3x-1\Leftrightarrow2x^2+\left(3m-7\right)x-1=0\) (1)
\(ac=-2< 0\Rightarrow\) phương trình luôn có 2 nghiệm hay d luôn cắt (P) tại 2 điểm phân biệt có hoành độ\(a;b\) là nghiệm của (1)
\(A\left(a;3a-1\right);B\left(b;3b-1\right)\) với \(\left\{{}\begin{matrix}a+b=7-3m\\ab=-\frac{1}{2}\end{matrix}\right.\)
Gọi C, D lần lượt là 2 điểm trên Ox có cùng hoành độ với A và B \(\Rightarrow C\left(a;0\right);D\left(b;0\right)\)
Áp dụng định lý Pitago: \(OA^2=OC^2+AC^2=a^2+\left(3a-1\right)^2\)
\(OB^2=OD^2+BD^2=b^2+\left(3b-1\right)^2\)
\(\Rightarrow P=OA^2+OB^2=a^2+b^2+\left(3a-1\right)^2+\left(3b-1\right)^2\)
\(P=10\left(a^2+b^2\right)-6\left(a+b\right)+2\)
\(P=10\left(a+b\right)^2-20ab-6\left(a+b\right)+2\)
\(P=10\left(a+b\right)^2-6\left(a+b\right)+12\)
\(P=10\left[\left(a+b\right)^2-2.\frac{3}{10}\left(a+b\right)+\frac{9}{100}\right]+\frac{111}{10}\)
\(P=10\left(a+b-\frac{3}{10}\right)^2+\frac{111}{9}\ge\frac{111}{9}\)
\(\Rightarrow P_{min}=\frac{111}{9}\) khi \(a+b=\frac{3}{10}\Leftrightarrow7-3m=\frac{3}{10}\Rightarrow m=\frac{67}{30}\)