\(y=-x^4-x^2-1\left(C\right)\). Viết phương trình tiếp tuyến của (C), biết :
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

Ta có \(y'=-4x^3-2x\)

a) Vì tiếp tuyến vuông góc với đường thẳng \(d:y=\frac{1}{6}x-\frac{1}{6}\)

Suy ra \(y'\left(x_0\right)=-6\Leftrightarrow2x_0^3+x_0^2-3=0\Leftrightarrow x_0=1\Rightarrow y_0=-3\)

Phương trình tiếp tuyến là \(y=-6x+3\)

 

b) Vì tuyến tuyến song song với đường thẳng \(y=6x+2\) nên ta có :

\(y'\left(x_0\right)=6\Leftrightarrow2x_0^3+x_0^2+3=0\Leftrightarrow\left(x_0+1\right)\left(2x_0^2-2x_0+3\right)=0\Rightarrow x_0=-1\Rightarrow y_0=-3\)

Nên ta có phương trình tiếp tuyến là :

                     \(y=6\left(x+1\right)-3=6x+3\)

13 tháng 10 2021

2x mũ 3 cộng x ũ 2 cộng 3 bằng 0 là ban lấy ở đâu đó ạ mình không hiểu

 

 
29 tháng 4 2016

Ta có : \(y'=\frac{x^2-2x}{\left(x-1\right)^2}\)

Gọi \(M\left(x_0;y_0\right)\) là tọa độ tiếp điểm của tiếp tuyến d với (C)

\(d:y=\frac{x_0^2-2_0x}{\left(x_0-1\right)^2}\left(x-x_0\right)+\frac{x_0^2-x_0+1}{x_0-1}\)

a) Vì d song song với đường thẳng \(\Delta:y=\frac{3}{4}x+\frac{1}{4}\) nên ta có :

\(\frac{x_0^2-2_0x}{\left(x_0-1\right)^2}=\frac{3}{4}\Leftrightarrow x_0^2-2_0x-3=0\Leftrightarrow x_0=-1;x_0=3\)

\(x_0=-1\) phương trình tiếp tuyến : \(y=\frac{3}{4}x-\frac{3}{4}\)

\(x_0=3\) phương trình tiếp tuyến : \(y=\frac{3}{4}x+\frac{5}{4}\)

b) Đường thẳng \(\Delta_m\) có hệ số góc \(k_m=\frac{1}{m}\)

Số tiếp tuyến thỏa mãn bài toán chính là số nghiệm của phương trình :

\(y'.k_m=-1\Leftrightarrow\frac{m\left(x^2-2x\right)}{\left(x-1\right)^2}=-1\)

                   \(\Leftrightarrow\left(m+1\right)x^2-2\left(m+1\right)x+1=0\left(1\right)\)

* Nếu m = - 1 suy ra (1) vô nghiệm, suy ra không có tiếp tuyến nào

* Nếu \(m\ne-1\), suy ra (1) có \(\Delta'=m\left(m+1\right)\) và (1) có nghiệm \(x=1\Leftrightarrow m=0\)

             + Khi \(\left[\begin{array}{nghiempt}m>0\\m< -1\end{array}\right.\) suy ra (*) có 2 nghiệm phân biệt nên có 2 tiếp tuyến

             + Khi \(-1< m\le0\) thì (*) vô nghiệm nên không có tiếp tuyến nào

 
27 tháng 4 2016

Hàm số xác định với mọi \(x\ne1\). Ta có : \(y'=\frac{-4}{\left(x-1\right)^2}\)

Gọi \(M\left(x_0;y_0\right);\left(x_0\ne1\right)\) là tiếp điểm, suy ra phương trình tiếp tuyến của (C) :

\(\Delta:y=\frac{-4}{\left(x_0-1\right)^2}\left(x-x_0\right)+\frac{2x_0+2}{x_0-1}\)

a) Vì tiếp tuyến có hệ số góc bằng -4 nên ta có :

\(\frac{4}{\left(x_0-1\right)^2}=-16\Leftrightarrow\left[\begin{array}{nghiempt}x_0=\frac{3}{2}\\x_0=\frac{1}{2}\end{array}\right.\)

\(x_0=\frac{3}{2}\Rightarrow y_0=10\Rightarrow\Delta=-16\left(x-\frac{3}{2}\right)+10\) hay \(y=-16x+22\)

\(x_0=\frac{1}{2}\Rightarrow y_0=-6\Rightarrow\Delta=-16\left(x-\frac{1}{2}\right)-6\) hay \(y=-16x+2\)

 
b) Vì tiếp tuyến song song với đường thẳng d : \(y=-4x+1\) nên ta có :
\(y'\left(x_0\right)=-4\Leftrightarrow\frac{-4}{\left(x_0-1\right)^2}=-4\Leftrightarrow x_0=0;x_0=2\)
\(x_0=0\Rightarrow y_0=2\Rightarrow\Delta:y=-4x+2\)
\(x_0=2\Rightarrow y_0=6\Rightarrow\Delta:y=-4x+14\)
 
c) Vì tiếp tuyến tạo với 2 trục tọa độ 1 tam giác vuông cân nên tiếp tuyến phải vuông góc với một trong hai đường phân giác \(y=\pm x\), do đó hệ số góc của tiếp tuyến bằng \(\pm1\) hay \(y'\left(x_0\right)=\pm1\) mà \(y'>0\), mọi \(x\ne1\) nên ta có :
\(y'\left(x_0\right)=-1\Leftrightarrow\frac{-4}{\left(x_0-1\right)^2}=-1\Leftrightarrow x_0=-1;x_0=3\)
\(x_0=-1\Rightarrow y_0=0\Rightarrow\Delta:y=-x-1\)
\(x_0=3\Rightarrow y_0=4\Rightarrow\Delta:y=-x+7\)
 
 
7 tháng 4 2016

Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm của tiếp tuyến d với đồ thị (C). Khi đó \(y'\left(x_0\right)=3\)

Ta có phương trình :

                  \(\frac{3}{\left(x_0+2\right)^2}=3\Leftrightarrow\left(x_0+2\right)^2=1\Leftrightarrow\begin{cases}x_0=-1\\x_0=-3\end{cases}\)

Phương trình tiếp tuyến d của đồ thị (C) tại các điểm (-1;1) và (-3;5) lần lượt là 

\(y=3x+2;y=3x+14\)

Từ giả thiết ta được \(y=3x+2\)

3 tháng 5 2016

Với m = 1, ta có \(\left(C_1\right):y=\frac{x+1}{x-1}\)

a. Gọi d là đường thẳng đi qua P, có hệ số góc k => \(d:y=k\left(x-3\right)+1\)

d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=k\left(x-3\right)+1\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm

Thế k vào phương trình thứ nhất, ta được :

\(\frac{x+1}{x-1}=\frac{-2}{\left(x-1\right)^2}\left(x-3\right)+1\Leftrightarrow x=2\)

\(\Rightarrow k=-2\Rightarrow\) phương trình tiếp tuyến : \(y=-2x+7\)

 

b. Gọi d là đường thẳng đi qua A, có hệ số góc k : \(d:y=k\left(x-2\right)-1\)

d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=k\left(x-2\right)-1\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm

Thế k vào phương trình thứ nhất, ta được :

\(\frac{x+1}{x-1}=\frac{-2}{\left(x-1\right)^2}\left(x-2\right)-1\Leftrightarrow x=\pm\sqrt{2}\)

\(x=\sqrt{2}\Rightarrow k=-2\left(3+2\sqrt{2}\right)\Rightarrow\) phương trình tiếp tuyến : \(y=-2\left(3+2\sqrt{2}\right)x+11+8\sqrt{2}\)

\(x=-\sqrt{2}\Rightarrow k=-2\left(3-2\sqrt{2}\right)\Rightarrow\) phương trình tiếp tuyến : \(y=-2\left(3-2\sqrt{2}\right)x+11-8\sqrt{2}\)

 
c. Ta có : \(y'=\frac{m^2-2m-1}{\left(x+m-2\right)^2}\)
Tiếp tuyến tại điểm có hoành độ x = 1 vuông góc với đường thẳng
\(y=x+1\Leftrightarrow y'\left(1\right)=-1\Leftrightarrow\frac{m^2-2m-1}{\left(m-1\right)^2}=-1\)
\(\Leftrightarrow m=0;m=2\)
 

 

 

 

29 tháng 4 2016

a. Tiếp tuyến của \(\left(C_m\right)\) tại điểm có hoành độ x = 1 có phương trình :

\(y=\left(m-2\right)\left(x-1\right)+3m-2=\left(m-2\right)x+3m\)

Yêu cầu của bài toán khi và chỉ khi \(\begin{cases}m-2=3\\2m\ne10\end{cases}\) vô nghiệm

Vậy không tồn tại m thỏa mãn yêu cầu bài toán

b. Ta có \(y'=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+m-\frac{7}{3}=3\left(x-\frac{2}{3}\right)^2+m-\frac{7}{3}\)

Suy ra \(y'\ge m-\frac{7}{3}\)

Tiếp tuyến tại điểm có hoành độ \(x=\frac{2}{3}\) có hệ số góc nhỏ nhất và hệ số góc có giá trị \(k=m-\frac{7}{3}\)

Yêu cầu bài toán \(\Leftrightarrow k.2=-1\Leftrightarrow\left(m-\frac{7}{3}\right).2=-1\Leftrightarrow m=\frac{11}{6}\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

27 tháng 4 2016

Tập xác định : \(D=R\)

Gọi tiếp điểm là \(M\left(x_0;y_0\right);y'=-4x^3-x\)

Hệ số gọc của \(\Delta\) là \(k=y'\left(x_0\right)\)

a) Vì  \(\Delta\perp d\)  nên \(\frac{1}{5}.k=-1\Leftrightarrow k=-5\Leftrightarrow-4x^3_0-x_0=-5\Leftrightarrow x_0=1\)

\(x_0=1\Rightarrow y\left(x_0\right)=\frac{9}{2}\Rightarrow\Delta:y=-5\left(x-1\right)+\frac{9}{2}\Leftrightarrow\Delta:y=-5x+\frac{19}{2}\)

Vậy tiếp tuyến vuông góc với d của (C) là \(\Delta:y=-5x+\frac{19}{2}\)

b) Phân giác của 2 đường \(d_1;d_2\) là :

\(\frac{\left|2x-y+2\right|}{\sqrt{5}}=\frac{\left|x-2y+3\right|}{\sqrt{5}}\Leftrightarrow\left[\begin{array}{nghiempt}y=-x+1\\y=x+\frac{5}{3}\end{array}\right.\)

Từ giả thiết suy ra \(\Delta\)  vuông góc với các đường phân giác của  \(d_1;d_2\) nên hệ số góc của \(\Delta\) là \(\pm1\) ( \(\Delta\)  không đi qua giao điểm của   \(d_1;d_2\))

* Trường hợp 1: Với k = 1 ta có \(-4x_0^3-x_0=1\Leftrightarrow x_0=-\frac{1}{2}\Rightarrow y_0=\frac{93}{16}\)

                        Suy ra \(\Delta:y-\frac{93}{16}=x+\frac{1}{2}\) hay \(y=x+\frac{101}{16}\)

* Trường hợp 2: Với k = -1 ta có \(-4x_0^3-4x_0=-1\Leftrightarrow x_0=\frac{1}{2}\)

                        Suy ra \(\Delta:y-\frac{93}{16}=x-\frac{1}{2}\) hay \(y=x+\frac{85}{16}\)

 

 

 
 
 
8 tháng 4 2016

Ta có \(M\left(-1;-2\right)\)

Phương trình của (C) tại M là \(\Delta:y=y'\left(-1\right)\left(x+1\right)-2\)

                                     hay \(\Delta:y=9x+7\)

\(\Delta\) // d \(\Leftrightarrow\begin{cases}m^2+5=9\\3m+1\ne7\end{cases}\) \(\Leftrightarrow\begin{cases}m=\pm2\\m\ne2\end{cases}\) \(\Leftrightarrow m=-2\)