Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Bảng biến thiên:
Đồ thị hàm số:
b, \(f\left(x\right)>0\Leftrightarrow x\in\left(-\infty;-3\right)\cup\left(-1;+\infty\right)\)
\(f\left(x\right)< 0\Leftrightarrow x\in\left(-3;-1\right)\)
c, Yêu cầu bài toán là gì vậy:v
d, Phương trình hoành độ giao điểm của \(\left(P\right);\left(d\right)\):
\(x^2+4x+3=2x+m-5\)
\(\Leftrightarrow x^2+2x+8-m=0\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt
\(\Delta'=1-\left(8-m\right)=m-7>0\Leftrightarrow m>7\)
Phương trình hoành độ giao điểm là:
\(\dfrac{1}{4}x^2-mx+\dfrac{3}{2}m+1=0\)
=>\(x^2-4mx+6m+4=0\)
\(\text{Δ}=\left(-4m\right)^2-4\left(6m+4\right)\)
\(=16m^2-24m-16\)
Để (d) và (P) có 1 điểm chung thì Δ=0
=>16m^2-24m-16=0
=>m=2 hoặc m=-1/2
\(\dfrac{x^2}{2}+2x+\dfrac{m}{2}+3=0\)
=>x^2+4x+m+6=0
\(\text{Δ}=4^2-4\left(m+6\right)=16-4m-24=-4m-8\)
Để phương trình có hai nghiệm phân biệt thì -4m-8>0
=>-4m>8
=>m<-2