Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(y'=3x^2-3\left(m-2\right)x-3\left(m-1\right)\), với mọi \(x\in R\)
\(y'=0\Leftrightarrow x^2-\left(m-2\right)x-m+1=0\Leftrightarrow x_1=-1;x_2=m-1\)
Chú ý rằng với m > 0 thì \(x_1< x_2\). Khi đó hàm số đạt cực đại tại \(x_1=-1\) và đạt cực tiểu tại \(x_2=m-1\). Do đó :
\(y_{CD}=y\left(-1\right)=\frac{3m}{2};y_{CT}=y\left(m-1\right)=-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\)
Từ giả thiết ta có \(2.\frac{3m}{2}-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\Leftrightarrow6m-6-\left(m+2\right)\left(m-1\right)^2=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+m-8\right)=0\Leftrightarrow m=1;m=\frac{-1\pm\sqrt{33}}{2}\)
Đối chiếu yêu cầu m > 0, ta có giá trị cần tìm là \(m=1;m=\frac{-1\pm\sqrt{33}}{2}\)
Hàm số y = x 3 + (m + 3) x 2 + mx - 2 đạt cực tiểu tại x = 1 khi:
A. m = 1 B. m = 2
C. m = -3 D. m = 4
Đáp án: C.
y' = 3 x 2 + 2(m + 3)x + m
y'(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = -3
Với m = -3, y' = 3 x 2 - 3 ⇒ y''(x) = 6x.
Vì y''(1) = 6 > 0 nên hàm số đạt cực tiểu khi m = -3.
Hàm số y = x 3 + (m + 3) x 2 + mx - 2 đạt cực tiểu tại x = 1 khi:
A. m = 1 B. m = 2
C. m = -3 D. m = 4
Đáp án: C.
y' = 3 x 2 + 2(m + 3)x + m
y'(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = -3
Với m = -3, y' = 3 x 2 - 3 ⇒ y''(x) = 6x.
Vì y''(1) = 6 > 0 nên hàm số đạt cực tiểu khi m = -3.
Chọn B
Hàm số đạt cực đại tại x=-3 và y y C D = - 3
Hàm số đạt cực tiểu tại x=-1 và y C T = 1
⇒ M 2 - 2 n = 7
Phương pháp trắc nghiệm:
Bấm máy tính:
Bước 1
Bước 2: Giải phương trình bậc hai :
Bước 3: Nhập vào máy tính
Cacl x = A → C
Cacl x = B → D
Bước 4: Tính C 2 - 2 D = 7