Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Phương pháp:
Ba số a, b, c lập thành cấp số ciingj khi và chỉ khi a + c = 2b
Cách giải:
Đáp án là B
Phương trình hoành độ giao điểm của (C) và trục: x 4 − 2 x 2 + m − 3 = 0
Đặt t = x 2 ≥ 0 ⇒ t 2 − 2 t + m − 3 = 0 *
(C) cắt Ox tại 4 điểm phân biệt khi phương trình (*) có hai nghiệm phân biệt dương.
Δ ' > 0 S > 0 P > 0 ⇔ − m + 4 > 0 m − 3 > 0 ⇔ 3 < m < 4.
Đáp án B
x 4 - 2 x 2 + m - 3 = 0 ⇒ y ' = 4 x 3 - 4 x y ' = 0 ⇔ [ x = 0 x = ± 1
Để đồ thị cắt Ox tại 4 điểm phân biệt thì:
m - 4 < 0 < -3 <=> 3 < m < 4
Đáp án B
y = 0 ⇔ x 2 = 1 x 2 = 2 m + 1 . có 4 nghiệm phân biệt khi
2 m + 1 > 0 ; 2 m + 1 ≠ 1 ⇔ m > − 1 ; m ≠ 0 .
Khi đó 4 nghiệm là − 2 m + 1 ; − 1 ; 1 ; 2 m + 1
4 nghiệm lập thành cấp số cộng có trường hợp sau sắp xếp theo thứ tự sau
TH1: − 1 ; − 2 m + 1 ; 2 m + 1 ; 1 ⇒ khoảng cách giữa chúng là bằng nhau ⇔ 1 − 2 m + 1 = 2 2 m + 1 ⇔ 3 2 m + 1 = 1 ⇔ m = − 4 9 .
TH2: − 2 m + 1 ; − 1 ; 1 ; 2 m + 1 ⇒ khoảng cách giữa chung là bằng nhau
⇔ 2 m + 1 − 1 = 2 ⇔ m = 4