K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

Với a = 1; b = -1, hàm số trở thành: y = x 3 + x 2  – x + 1.

- Tập xác định : D = R.

- Sự biến thiên :

Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

+ Bảng biến thiên :

Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Kết luận :

Hàm số đồng biến trên (-∞ ; -1) và Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số nghịch biến trên Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số đạt cực đại tại x = -1 ; y = 2.

Hàm số đạt cực tiểu tại Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị :

Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

27 tháng 4 2017

a) Hàm số y=

Tập xác định: (0; +∞).

Sự biến thiên: > 0, ∀x ∈ (0; +∞) nên hàm số luôn luôn đồng biến.

Giới hạn đặc biệt: = 0, = +∞, đồ thị hàm số có tiệm cận.

Bảng biến thiên

Đồ thị( hình bên). Đồ thị hàm số qua (1;1), (2;).

b) y= .

Tập xác định: ℝ \{0}.

Sự biến thiên: < 0, ∀xj# 0, hàm nghich biến trong hai khoảng (-∞;0) và (0; +∞).

Giới hạn đặc biệt:= +∞, = -∞, = 0, = 0; đồ thị hàm số nhận trục tung làm tiệm cận đứng, trục hoành làm tiệm cận ngang.

Bảng biến thiên

Đồ thị ( hình dưới). Đồ thị qua (-1;-1), (1;1), (2; ), ( -2; ). Hàm số đồ thị đã cho là hàm số lẻ nên đối xứng qua gốc tọ độ.



23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

14 tháng 4 2017

Lời giải

khảo sát

TXD mọi x

y' =3x^2 -6x =3x(x-2)

y' =0 => x= 0 hoặc x=2

y'' =6x-6

y''(0) =-6 <0 hàm đạt cực đại tại x=0

y''(2) =6 >0 hàm đạt cực tiểu tại x =2

y'' =0 => x=1 hàm có điểm uốn tại x=1

hàm đi từ - vc--> +vc đi góc (III) lên (IV)

Vẽ đồ thị

Các điểm quan trọng

cực đại A(0,0)

cực tiểu B(2,-4)

uốn C(1,-2)

Các điểm phụ trọng

giao với trục hoành E(0,0); \(F\left(3;0\right)\)

Giao với trục tung: \(A\left(0,0\right)\)

Đồ thị

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

b)

nhìn vào đồ thị số y=x^3 -3x^2

Hàm số x^3 -3x^2 -m có 3 nghiệm phân biệt

khi 0<m<-4

14 tháng 4 2017

0>m<-4

sửa

\(-4< m< 0\)

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit