K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2020

Câu 2:

\(f'\left(x\right)=\frac{-3}{\left(2x-1\right)^2}\)

a/ \(x_0=-1\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-\frac{1}{3}\\f\left(x_0\right)=0\end{matrix}\right.\)

Pttt: \(y=-\frac{1}{3}\left(x+1\right)=-\frac{1}{3}x-\frac{1}{3}\)

b/ \(y_0=1\Rightarrow\frac{x_0+1}{2x_0-1}=1\Leftrightarrow x_0+1=2x_0-1\Rightarrow x_0=2\)

\(\Rightarrow f'\left(x_0\right)=-\frac{1}{3}\)

Pttt: \(y=-\frac{1}{3}\left(x-2\right)+1\)

c/ \(x_0=0\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-3\\y_0=-1\end{matrix}\right.\)

Pttt: \(y=-3x-1\)

d/ \(6x+2y-1=0\Leftrightarrow y=-3x+\frac{1}{2}\)

Tiếp tuyến song song d \(\Rightarrow\) có hệ số góc bằng -3

\(\Rightarrow\frac{-3}{\left(2x_0-1\right)^2}=-3\Rightarrow\left(2x_0-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=-1\\x_0=1\Rightarrow y_0=2\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-3x-1\\y=-3\left(x-1\right)+2\end{matrix}\right.\)

NV
4 tháng 6 2020

Làm câu 1,3 trước, câu 2 hơi dài tối rảnh làm sau:

1/ \(\lim\limits\frac{n^2+2n+1}{2n^2-1}=lim\frac{1+\frac{2}{n}+\frac{1}{n^2}}{2-\frac{1}{n^2}}=\frac{1}{2}\)

\(\lim\limits_{x\rightarrow0}\frac{2\sqrt{x+1}-x^2+2x+2}{x}=\frac{2-0+0+2}{0}=\frac{4}{0}=+\infty\)

Chắc bạn ghi nhầm đề, câu này biểu thức tử số là \(...-x^2+2x-2\) thì hợp lý hơn

3/ \(y'=2sin2x.\left(sin2x\right)'=4sin2x.cos2x=2sin4x\)

b/ \(y'=4x^3-4x\)

c/ \(y'=\frac{3\left(x+2\right)-1\left(3x-1\right)}{\left(x+2\right)^2}=\frac{7}{\left(x+2\right)^2}\)

d/ \(y'=10\left(x^2+x+1\right)^9\left(x^2+x+1\right)'=10\left(x^2+x+1\right)^9.\left(2x+1\right)\)

e/ \(y'=\frac{\left(2x^2-x+3\right)'}{2\sqrt{2x^2-x+3}}=\frac{4x-1}{2\sqrt{2x^2-x+3}}\)

x^2+(y-1)^2=4

=>R=2 và I(0;1)

A(1;1-m) thuộc (C)

y'=4x^3-4mx

=>y'(1)=4-4m

PT Δsẽ là y=(4-m)(x-1)+1-m

Δ luôn đi qua F(3/4;0) và điểm F nằm trong (λ)

Giả sử (Δ) cắt (λ) tại M,N

\(MN=2\sqrt{R^2-d^2\left(I;\Delta\right)}=2\sqrt{4-d^2\left(I;\Delta\right)}\)

MN min khi d(I;(Δ)) max

=>d(I;(Δ))=IF 

=>Δ vuông góc IF

Khi đó, Δ có 1 vecto chỉ phương là: vecto u vuông góc với vecto IF=(3/4;p-1)

=>vecto u=(1;4-4m)

=>1*3/4-(4-4m)=0

=>m=13/16

NV
23 tháng 4 2022

\(\left(m^2-3m-5\right)x-y-2m+19=0\)

\(\Leftrightarrow y=\left(m^2-3m-5\right)x-2m+19\)

Ta có: 

\(f'\left(x\right)=-3x^2+4x-1\)

\(f'\left(2\right)=-5\)

Phương trình tiếp tuyến tại A:

\(y=-5\left(x-2\right)+3\Leftrightarrow y=-5x+13\)

Để hai đường thẳng song song: 

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-5=-5\\-2m+19\ne13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m=0\\2m\ne6\end{matrix}\right.\)

\(\Leftrightarrow m=0\)

12 tháng 4 2021

Pt hoành độ giao điểm của đồ thị hàm số (C) với đường thẳng d là:

\(\dfrac{x-1}{x+1}=m-x\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\g\left(x\right)=x^2+\left(2-m\right)x-m-1=0\left(1\right)\end{matrix}\right.\)

Đồ thị (C) cắt đường thẳng d tại 2 điểm phân biệt <=> pt(1) có 2 nghiệm phân biệt khác -1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\g\left(-1\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+8>0\\-2\ne0\end{matrix}\right.\)

Khi đó: \(x_A,x_B\) là nghiệm của pt (1). Vì tiếp tuyến tại A và B //

\(\Rightarrow f'\left(x_A\right)=f'\left(x_B\right)\Leftrightarrow\dfrac{2}{\left(x_A+1\right)^2}=\dfrac{2}{\left(x_B+1\right)^2}\Leftrightarrow\left[{}\begin{matrix}x_A=x_B\left(loai\right)\\x_A+x_B=-2\end{matrix}\right.\)

Theo định lí Viet ta có: 

\(x_A+x_B=m-2\Rightarrow m-2=-2\Leftrightarrow m=0\)

4 tháng 5 2021

Ủa hỏi mỗi hoành độ thôi hở :D?

\(f'\left(x\right)=2x-4\)

Vi \(pttt//d:y=8x+2017\Rightarrow f'\left(x\right)=8\)

\(\Rightarrow2x-4=8\Leftrightarrow x=6\)

17 tháng 5 2021

Điều kiện: \(x\ne1\)

a) Xét phương trình: \(\frac{x^2-2mx+3m-2}{x-1}=0\Leftrightarrow x^2-2mx+3m-2=0\)\(\left(x-1\ne0\right)\)

Pt có hai nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow m^2-3m+2>0\Leftrightarrow\orbr{\begin{cases}m>2\\m< 1\end{cases}}\)

Khi đó \(\hept{\begin{cases}x_1=m-\sqrt{m^2-3m+2}\\x_2=m+\sqrt{m^2-3m+2}\end{cases}}\)

+) \(x_1,x_2\ne1\Leftrightarrow\hept{\begin{cases}m-\sqrt{m^2-3m+2}\ne1\\m+\sqrt{m^2-3m+2}\ne1\end{cases}\Leftrightarrow m\ne1}\)

+) Tiếp tuyến của đồ thị tại hai giao điểm với trục Ox vuông góc với nhau

\(\Leftrightarrow\hept{\begin{cases}y'\left(x_1\right)=-1\left(1\right)\\y'\left(x_2\right)=1\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\frac{\left(2x_1-2m\right)\left(x_1-1\right)-\left(x_1^2-2mx_1+3m-2\right)}{\left(x_1-1\right)^2}=-1\)

\(\Leftrightarrow\frac{m-1}{\left(x_1-1\right)^2}=2\Rightarrow m-1=2\left(m-\sqrt{m^2-3m+2}-1\right)^2\)

\(\Leftrightarrow\left(m-1\right)\left[1-2\left(2m-3-2\sqrt{m^2-3m+2}\right)\right]=0\)

\(\Leftrightarrow4\sqrt{m^2-3m+2}=4m-7\Leftrightarrow\hept{\begin{cases}m\ge\frac{7}{4}\\m=\frac{17}{8}\end{cases}}\Leftrightarrow m=\frac{17}{8}\)(t/m m>2 v m<1)

Giải (2) cho ra \(m=1\)(loại). Vậy m cần tìm là \(m=\frac{17}{8}.\)

1. Cho f(x) = x3- \(\frac{1}{2}\)x2 - 4x . Tìm x sao cho f ' (x) < 0 2. Tính đạo hàm của hàm số y = \(\sqrt{cos2x}\) 3. Cho hàm số f(x) xác định trên R bởi f(x) = \(\sqrt{x^2}\) . Giá Trị f ' (0) bằng 4. Cho hàm số y = \(\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)^2\) . Đạo hàm của hàm số f(x) là 5. Cho hàm số f(x) xác định trên D = [0;\(+\infty\)) cho bởi f(x) = x\(\sqrt{x}\) có đạo hàm là 6. Hàm số f(x) =...
Đọc tiếp

1. Cho f(x) = x3- \(\frac{1}{2}\)x2 - 4x . Tìm x sao cho f ' (x) < 0

2. Tính đạo hàm của hàm số y = \(\sqrt{cos2x}\)

3. Cho hàm số f(x) xác định trên R bởi f(x) = \(\sqrt{x^2}\) . Giá Trị f ' (0) bằng

4. Cho hàm số y = \(\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)^2\) . Đạo hàm của hàm số f(x) là

5. Cho hàm số f(x) xác định trên D = [0;\(+\infty\)) cho bởi f(x) = x\(\sqrt{x}\) có đạo hàm là

6. Hàm số f(x) = \(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\) xác đinh trên D = (0;+\(\infty\)) . Đạo hàm của f(x) là

7. Đạo hàm của hàm số \(y=\) \(\frac{x^2+x+3}{x^2+x+1}\) bằng biểu thức có dạng \(\frac{ax+b}{\left(x^2+x-1\right)^2}\) . Khi đó a + b bằng

8. Cho hàm số \(y=\) \(-x^3+2x^2\) có đồ thị (C) . Có bao nhiêu tiếp tuyến của đồ thị (C) song song với đường thẳng \(y=\) x

9. Cho hàm số \(y=\) \(\frac{5}{3}x^3-x^2+4\) có đồ thị (C) . Tiếp tuyến của (C) tại điểm có hoành độ x0=3 . Tính hệ số góc

10. Cho đồ thị hàm số \(y=\) \(x^3-2x^2+2x\) có đồ thị (C) . Gọi \(x_1,x_2\) là hoành độ các điểm M , N trên (C) mà tại đó tiếp tuyến của (C) vuông góc với đường thẳng \(y=-x+2019\) . Khi đó \(x_1+x_2\) bằng

0