Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giao điểm của đồ thị hàm số (C) và trục tung là điểm N(0;1)
Ta có : \(f'\left(x\right)=\frac{3}{\left(1-x\right)^2}\) suy ra tiếp tuyến tại điểm N là \(\left(\Delta\right):y=3x+1\Leftrightarrow\left(\Delta\right):3x-y+1=0\)
Xét điểm \(M\left(a+1;\frac{2a+3}{-a}\right)\in\left(C\right),a>0\)
Ta có : \(d_{M\\Delta }=\frac{\left|3\left(a+1\right)+\frac{2a+3}{a}+1\right|}{\sqrt{10}}=\frac{1}{\sqrt{10}}.\frac{3a^2+6a}{+3a}=\frac{3}{\sqrt{10}}\left(a+\frac{2}{a}+1\right)\ge\frac{3}{\sqrt{10}}\left(2\sqrt{2}+1\right)\)
Dấu bằng xảy ra khi \(a=\frac{2}{a}\Leftrightarrow a=\sqrt{2}\Rightarrow M\left(\sqrt{2}+1;\frac{2\sqrt{2}+5}{-\sqrt{2}}\right)\)
Chọn C
Ta có AC'=6 nên AB = 2 3 .
Mặt cầu (S) có tâm I(2;4;-1) trùng với tâm hình lập phương ABCD.A'B'C'D' và có bán kính R =1 < A B 2 nên mặt cầu (S) nằm trong hình lập phương ABCD.A'B'C'D'.
Với mọi điểm M nằm trong hình lập phương ABCD.A'B'C'D', tổng các khoảng cách từ điểm M đến 6 mặt của hình lập phương ABCD.A'B'C'D' bằng 3AB = 6 3 .
Vậy từ một điểm M bất kỳ thuộc mặt cầu (S), tổng các khoảng cách từ điểm M đến 6 mặt của hình lập phương ABCD.A'B'C'D' bằng 6 3 .