K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2022

Để đây là hàm số bậc nhất và nghịch biến thì (m^2-4)=0 và (-2m-n)(5m-n)<0

=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left(2m+n\right)\left(5m-n\right)>0\end{matrix}\right.\)

TH1: m=2

(2m+n)(5m-n)>0

=>(n+4)(-n+10)>0

=>(n+4)(n-10)<0

=>-4<n<10

TH2: m=-2

(2m+n)(5m-n)>0

=>(n-4)(-n-10)>0

=>(n-4)(n+10)<0

=>-10<n<4

2 tháng 12 2018

a)

đường thẳng (d1) song song với đường thẳng (d2) khi :

a = a' và  b  khác  b'

 suy ra :

\(m-1=3\)                \(\Leftrightarrow m=4\)

 vậy  đường thẳng (d1) song song với đường thẳng (d2) khi  m = 4

9 tháng 12 2016

a) (m^2+4)>0=> voi moi m

b)(m^2-2)<0=> -\(-\sqrt{2}< m< \sqrt{2}\)

c) (m^2+2m+2=(m+1)^2+1>0  voi m=>f(x) luon dong bien=> dpcm

9 tháng 12 2016

tong quat y=ax+b

DB khi a>0

NB khi a<0

hang so khi a=0

giai

a. với giá trị nào của m thì hàm số y= ( m+4)x +3 là hsđb : 

=> a>0=> m^2+4 >0 do m^2>=0=> m^2+4 >=0 tất nhiên >0 với mọi m

b. với giá trị nào của m tì hàm số y= (m-2)x +31 là hsnb

a<0=> m^2-2<0=> m^2<2=> !m!<\(\sqrt{2}=>-\sqrt{2}< m< \sqrt{2}\\ \)

c. chứng minh với mọi m, hàm số y=(m2+2m+2)x+3 luôn đồng biến trên R

ta ca

a=(m^2+2m+2=m^2+2m+1+1=(m+1)^2+1 do (m+1)^2>=0 moi m=> (m+1)^2+1>=1 voi moi m

=> a>0 với mọi m=> y luôn đồng biến

7 tháng 10 2021

a) hàm số bậc nhất -2m-4\(\ne\)0<=>m\(\ne-2\)

b)hàm số nghịch biến\(-2m-4< 0\Leftrightarrow m>-2\)

7 tháng 10 2021

\(a,f\left(x\right)=\left(-2m-4\right)x+1\) bậc nhất \(\Leftrightarrow-2m-4\ne0\Leftrightarrow m\ne-2\)

\(b,f\left(x\right)=\left(-2m-4\right)x+1\) nghịch biến \(\Leftrightarrow-2m-4< 0\Leftrightarrow-2m< 4\Leftrightarrow m>-2\)

9 tháng 12 2021

a) khi m khác 1/2

b)khi m >1

c) khi K<5