K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

 Đáp án D

Phương pháp:

Đánh giá từng đáp án.

Cách giải:

(1) Hàm số y = log2x đồng biến trên khoảng (0;+∞): đúng, do 2 > 1

(2) Hàm số y = log2x có một điểm cực tiểu: sai, hàm số y = log2x luôn đồng biến trên (0;+∞)

(3) Đồ thị hàm số y = log2x có tiệm cận: đúng, tiệm cận đó là đường x = 0

Số phát biểu đúng là 2.

27 tháng 10 2017

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

28 tháng 8 2021

hacker

18 tháng 5 2019

Chọn D 

Xét hàm số 7af1T2CY4XHS.png.

RfalekgBUBaQ.png

aOczkEfJV1tj.pngaYsNDSzljTNQ.pngUF4yJOb1ogrC.png .

Ta lại có vju5Wc54jwqj.png thì 2jID4em9PkCG.png. Do đó JJhodGy51kPs.png thì cpGrriJgA2st.png.

mKebe5ZmHFD3.png thì sVT7jOs2C3uY.png. Do đó ZOYccuvVqHx0.png thì em9kxGoiS0pR.png.

Từ đó ta có bảng biến thiên của RAaomOLuvBkQ.png như sau

xoOsqe6siFZ5.png

Dựa vào bảng biến thiên, ta có

I. Hàm số lETzJPTAVdaj.png có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.

II. Hàm số WSPSO9eIJto5.pngđạt cực tiểu tại NL61oX2gG0Wp.png LÀ MỆNH ĐỀ SAI.

III. Hàm số Fh39qRlZRctR.pngđạt cực đại tại w8N78QnsGhAX.png LÀ MỆNH ĐỀ SAI.

IV. Hàm số id6pIDtshz1U.png đồng biến trên khoảng beFLyJnBXW09.png LÀ MỆNH ĐỀ ĐÚNG.

V. Hàm số zWoaI9WQVqcA.png nghịch biến trên khoảng I8Y5Xke6XPDp.png LÀ MỆNH ĐỀ SAI.

 

Vậy có hai mệnh đề đúng.

21 tháng 12 2020

ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????

30 tháng 5 2017

TenAnh1 TenAnh1

20 tháng 1 2019

Chọn A

Đk để hàm số xác định là: GYXpAvatK80Q.png. Vậy mệnh đề VpCndTaXsjrP.pngđúng.

Do hàm số có tập xác định Qb9iWI1Z6rUO.png nên không tồn tại KjopgaCTlFwj.png do đó đồ thị hàm số này không có đường tiệm cận ngang. Vậy mệnh đề dFtNX4SshUxC.pngsai.

Do pCMn0N5akh2H.png nên đồ thị hàm số có DhEMk9PXjYk7.png đường tiệm cận đứng là f0Tq633b6PuA.pngj9czZPt4Hor8.png. Vậy VhfiiT3bH2nv.pngđúng.

Ta có

Do WUo3G9jmLxjj.png bị đổi dấu qua 7VRjQgjypoFX.png nên hàm số có một cực trị. Vậy mệnh đề 4Ghd7yAeTtCu.pngđúng.

 

Do đó số mệnh đề đúng là JoWLLxFjjSSz.png.

21 tháng 8 2018

Ta có 

Bảng biến thiên của hàm số y= g( x)

VYxMvmtHGN5P.png

Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng ( 3: + ∞)  hàm số nghịch biến trong khoảng (-∞; -3) .

Hàm số có 3 cực trị, hàm số đạt giá trị nhỏ nhất tại x= ±3

Vậy có 3 khẳng định đúng là khẳng định I, II, IV

Chọn C.

13 tháng 5 2017

Đáp án A.

Hàm số có y = x4 – x + 2 không là hàm số chẵn nên mệnh đề I sai.

Mệnh đề II, III, IV đúng

21 tháng 10 2017

26 tháng 3 2016

Với \(x\ne2\) ta có \(y=1-\frac{m}{\left(x-2\right)^2}\)

Hàm số có cực đại và cực tiểu \(\Leftrightarrow\) phương trình \(\left(x-2\right)^2-m=0\) (1) có 2 nghiệm phân biệt khác 2 \(\Leftrightarrow m>0\)

Với m>0 phương trình (1) có 2 nghiệm là :

\(x_1=2+\sqrt{m}\Rightarrow y_1=2+m+2\sqrt{m}\)

\(x_2=2-\sqrt{m}\Rightarrow y_2=2+m-2\sqrt{m}\)

Hai điểm cực trị của đồ thị hàm số \(A\left(2-\sqrt{m};2+m-2\sqrt{m}\right);B\left(\left(2+\sqrt{m};2+m+2\sqrt{m}\right)\right)\)

Khoảng cách từ A và B tới d bằng nhau nên ta có phương trình :

\(\left|2-m-\sqrt{m}\right|=\left|2-m+\sqrt{m}\right|\)

\(\Leftrightarrow\begin{cases}m=0\\m=2\end{cases}\)

Đối chiếu điều kiện thì m=2 thỏa mãn bài toán. Vậy yêu cầu bài toán là m=2