K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017

Chọn B

Từ đồ thị của hàm số f'(x) trên đoạn [0;4] ta có bảng biến thiên của hàm số trên đoạn [0;4] như sau:

Từ bảng biến thiên ta có 

Mặt khác 

Suy ra 

18 tháng 4 2019

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

31 tháng 8 2019

Chọn B

Ta có:

biến thiên của hàm số f(x) trên đoạn [0;4]

Nhìn vào bảng biến thiên ta thấy 

Ta có f(2) + f(4) = f(3) + f(0)  ⇔ f(0) - f(4) = f(2) - f(3) > 0.

Suy ra: f(4) < f(0). Do đó 

Vậy giá trị nhỏ nhất và lớn nhất của f(x) trên đoạn [0;4] lần lượt là: f(4), f(2).

9 tháng 9 2018

Chọn A

Từ đồ thị của hàm số y = f'(x) ta có bảng biến thiên của hàm số y = f(x) trên đoạn [-1;2] như sau

Nhận thấy

Để tìm  ta so sánh f(-1) và f(2)

Theo giả thiết, 

Từ bảng biến thiên , ta có f(0) - f(1) > 0. Do đó f(2) - f(-1) > 0 


7 tháng 7 2018

\

26 tháng 9 2017

Chọn B

Vì y =  a x 3 + c x + d ,   a ≠ 0  là hàm số bậc ba và có  m i n x ∈ - ∞ ; 0   f ( x )   =   f ( - 2 ) nên a < 0 và y' = 0   có hai nghiệm phân biệt.

Ta có  có hai nghiệm phân biệt  ⇔ ac < 0

Vậy với a < 0, c > 0 thì y' = 0 có hai nghiệm đối nhau 

Từ đó suy ra


⇔ c = -12a

Ta có bảng biến thiên

Ta suy ra 

17 tháng 10 2018

27 tháng 12 2019

Chọn D

Từ đồ thị của hàm số y = f'(x) ta suy ra bảng biến thiên của hàm số y = f(x) trên đoạn như sau:

Từ bảng biến thiên, ta có nhận xét sau: 

Ta lại có: f(0) + f(1) - 2f(2) = f(4). - f(3)

28 tháng 7 2017

Chọn D

Ta có  3x.f(x) -  x 2 f ' ( x )   =   2 f 2 ( x )  

Thay x = 1 vào ta được  vì f(1) =  1 3 nên suy ra C = 2

Nên  Ta có: 

Khi đó, f(x) đồng biến trên [1;2]

Suy ra 

Suy ra