K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2019

Chọn C.

Phương pháp: Dựa vào bảng biến thiên để xác định tiệm cận, cực trị, giá trị lớn nhất, giá trị nhỏ nhất.

Cách giải: Dựa vào bảng biến thiên dễ thấy đồ thị hàm số có tiệm cận ngang y = 0 và hai tiệm cận đứng x = 2, x = -2. Vậy (I) sai và (IV) đúng.

7 tháng 10 2019

24 tháng 11 2017

Đáp án là D

Từ BBT ta có

lim x → + ∞ y = − 1 ; lim x → − ∞ y = 1  do đó đồ thị hàm số có hai đường tiệm cận ngang là

y = 1; y =−1.

lim x → 1 − y = + ∞ ; lim x → 1 − y = − ∞  do đó đồ thị hàm số có một đường tiệm cận đứng là x =1. Vậy tổng số có 3 đường tiệm cận

1 tháng 6 2019

Đáp án C

Các đường tiệm cận đứng là x = 1 ; x = − 1.  

Tiệm cận ngang là y = − 2  
Vậy có tất cả 3 đường tiệm cận

22 tháng 10 2018

Đáp án D

Tại -1 hàm số không xác định nên không nghịch biến trên ( - ∞ ; 3 )  

11 tháng 1 2018

Chọn B.

12 tháng 4 2018

Đáp án  C

Các khẳng định đúng là I, III, IV.

8 tháng 7 2019

Đáp án là B

Từ BBT ta thấy

31 tháng 7 2018

Đáp án D

Khẳng định sai là “Hàm số nghịch biến trên khoảng − ∞ ; 1 ” do hàm số không xác định tại  x = - 2

24 tháng 8 2018

Đáp án B

Sai lầm thường gặp: Tập xác định D = ℝ \ 3 .

Đạo hàm y ' = − 2 x − 3 2 ,0, ∀ x ∈ D ⇒  Hàm số nghịch biến trên ℝ \ 3 , hoặc làm số nghịch biến trên − ∞ ; 3 ∪ 3 ; + ∞ . Hàm số không có cực trị.

Tiệm cận đứng: x=3; tiệm cận ngang:  y=1. Đồ thị hàm số nhận giao điểm   I 3 ; 1  của hai đường tiệm cận làm tâm đối xứng.

Từ đó nhiều học sinh kết luận các mệnh đề 1 , 3 , 4  đúng và chọn ngay A.

Tuy nhiên đây là phương án sai.

Phân tích sai lầm:

Mệnh đề (1) sai, sửa lại: hàm số nghịch biến trên mỗi khoảng − ∞ ; 3  và 3 ; + ∞ . Học sinh cần nhớ rằng, ta chỉ học định nghĩa hàm số đồng biến (nghịch biến) trên khoảng, đoạn, nửa khoảng; chứ không có trên những khoảng hợp nhau.

Mệnh đề (2) sai. Đồ thị hàm số có một tiệm cận đứng là x=3, một tiệm cận ngang là y=1.

Mệnh đề 3 , 4  đúng.