K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

Chọn B.

D = [-2; 2]

F(x) không xác định tại x = 3

 ; f(-2) = 0. Vậy hàm số liên tục tại x = -2

Vậy không tồn tại giới hạn của hàm số khi  x 2.

31 tháng 10 2019

15 tháng 11 2018

Đáp án D

Cho hàm số f(x) xác định trên khoảng K chứa a. Hàm số f(x) liên tục tại x=a nếu 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Hàm số \(f\left( x \right) = {x^2} + \sin x\) có tập xác định là \(\mathbb{R}\).

Hàm số x2 và sinx liên tục trên \(\mathbb{R}\) nên hàm số \(f\left( x \right) = {x^2} + \sin x\) liên tục trên \(\mathbb{R}\).

b) Hàm số \(g\left( x \right) = {x^4} - {x^2} + \frac{6}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}.\)

Hàm số \({x^4} - {x^2}\) liên tục trên toàn bộ tập xác định

Hàm số \(\frac{6}{{x - 1}}\) liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)

Vậy hàm số đã cho liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)

c) Hàm số \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ {-4;3} \right\}.\)

Hàm số \(\frac{{2x}}{{x - 3}}\)  liên tục trên các khoảng \(\left( {-\infty ;3} \right)\) và \(\left( {3; + \infty } \right).\)

Hàm \(\frac{{x - 1}}{{x + 4}}\)  liên tục trên các khoảng \(\left( {-\infty ;-4} \right)\) và \(\left( {-4; + \infty } \right).\)

Vậy hàm số đã cho liên tục trên các khoảng  \(\left( {-\infty ;-4} \right)\), \(\left( {-4;3} \right)\), \(\left( {3; + \infty } \right).\)

\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{x+7}-3}{x-2}\left(x< >2\right)\\mx+2023\left(x=2\right)\end{matrix}\right.\)

Để hàm số liên tục tại x=2 thì \(\lim\limits_{x\rightarrow2}f\left(x\right)=F\left(2\right)\)

=>\(\lim\limits_{x\rightarrow2}\dfrac{x+7-9}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=2m+2023\)

=>\(2m+2023=\dfrac{1}{\sqrt{2+7}+3}=\dfrac{1}{6}\)

=>m=-12137/12

25 tháng 1 2019

Chọn B.

Ta có: D = (-; -2] [2; +∞).

 .và f(2) = 0.

 

Vậy hàm số liên tục tại x = 2.

Với -2 < x < 2 thì hàm số không xác định.

26 tháng 6 2018

Đáp án B

8 tháng 9 2017

Chọn A.

Vậy   nên hàm số liên tục tại x = -2.

18 tháng 2 2017

A = 0. Khi đó f(x) có đạo hàm tại x = 0.