Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=-3x^2-6mx+6m=3\left(-x^2-2mx+2m\right)\)
Đặt \(f\left(x\right)=-x^2-2mx+2m\)
a. \(y'=0\) có 2 nghiệm \(x_1\le x_2< 1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2+2m\ge0\\-f\left(1\right)=1>0\\\dfrac{x_1+x_2}{2}=-2m< 1\end{matrix}\right.\) \(\Rightarrow m\le-2\)
b. \(y'=0\) có 2 nghiệm cùng dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2+2m\ge0\\x_1x_2=-2m>0\\\end{matrix}\right.\) \(\Rightarrow m\le-2\)
c. \(\Delta'=m^2+2m>0\Rightarrow\left\{{}\begin{matrix}m>0\\m< -2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1-x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+1}{2}\\x_2=\dfrac{-2m-1}{2}\end{matrix}\right.\)
\(x_1x_2=-2m\Rightarrow\left(\dfrac{-2m+1}{2}\right)\left(\dfrac{-2m-1}{2}\right)=-2m\)
\(\Leftrightarrow4m^2-1=-8m\Rightarrow4m^2+8m-1=0\Rightarrow...\)
d.
\(y'< 0\) ;\(\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\\\Delta'=m^2+2m< 0\end{matrix}\right.\)
\(\Leftrightarrow-2< m< 0\)
e.
\(y'< 0\) ; \(\forall x< 0\)
\(\Leftrightarrow-x^2-2mx+2m< 0\) ;\(\forall x< 0\)
TH1: \(\Delta'=m^2+2m< 0\Leftrightarrow-2< m< 0\)
TH2: \(\left\{{}\begin{matrix}\Delta'\ge0\\0< x_1\le x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m\ge0\\x_1+x_2=-2m>0\\x_1x_2=-2m>0\end{matrix}\right.\) \(\Rightarrow m\le-2\)
1. Áp dụng quy tắc L'Hopital
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2\sqrt{x+1}}}{-f'\left(0\right)}=-\dfrac{1}{6}\)
2.
\(g'\left(x\right)=2x.f'\left(\sqrt{x^2+4}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(\sqrt{x^2+4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+4}=1\\\sqrt{x^2+4}=-2\end{matrix}\right.\)
2 pt cuối đều vô nghiệm nên \(g'\left(x\right)=0\) có đúng 1 nghiệm
Chọn C
Ta có y ' = 4 − 1 2 x
y ' ( x ) = 0 ⇔ 4 − 1 2 x = 0
⇔ 4 = 1 2 x ⇔ 8 x = 1 ⇔ x = 1 8 ⇔ x = 1 64
\(y'=12x^3-6x-6\)
\(=6\left(2x^3-x-1\right)=6\left(x-1\right)\left(2x^2+2x+1\right)\)
\(\Rightarrow\) Nghiệm của pt \(y'=0\) là \(x=1\)
1.
Hàm số xác định khi: \(1-2sinx\ne0\Leftrightarrow sinx\ne\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{6}+k2\pi\\x\ne\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Chọn B.
y ' = cot 2 x 4 ' = 2 cot x 4 cot x 4 ' = 1 2 cot x 4 1 + cot 2 x 4
y ' = 0 ⇔ 1 2 cot x 4 1 + cot 2 x 4 = 0
⇔ cot x 4 = 0 ⇔ x 4 = π 2 + k π ⇔ x = 2 π + k 4 π , k ∈ ℤ
a: y'=2/3*3x^2-2x(m+1)+3(m+1)
=x^2-x(2m+2)+3m+3
y'=0
Δ=(2m+2)^2-4(3m+3)=4m^2+8m+4-12m-12=4m^2-4m-8
Để phương trình có hai nghiệm thì 4m^2-4m-8>=0
=>m^2-m-2>=0
=>m>=2 hoặc m<=-1
b: y'=0 có hai nghiệm trái dấu
=>3m+3<0
=>m<-1
Xét pt \(\left|x^2-2\left|x\right|+m\right|=1\Leftrightarrow\left|\left(\left|x\right|-1\right)^2+m-1\right|=1\) (1)
Đặt \(\left(\left|x\right|-1\right)^2=t\ge0\) (2)
Ta thấy:
- Với \(\left[{}\begin{matrix}t=0\\t>1\end{matrix}\right.\) \(\Rightarrow\) (2) có 2 nghiệm
- Với \(t=3\Rightarrow\) (2) có 3 nghiệm
- Với \(0< t< 1\Rightarrow\) (2) có 4 nghiệm
- Với \(t< 0\Rightarrow\) (2) vô nghiệm
Xét pt: \(\left|t+m-1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}t+m-1=1\\t+m-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}t=2-m\\t=-m\end{matrix}\right.\) luôn có 2 nghiệm
\(\Rightarrow\) (1) có 2 nghiệm khi
TH1: \(\left[{}\begin{matrix}-m< 0\\2-m=0\end{matrix}\right.\) \(\Rightarrow m=2\) (TH này pt có 2 nghiệm, nhưng đó là 2 nghiệm kép)
TH2: \(\left[{}\begin{matrix}-m< 0\\2-m>1\end{matrix}\right.\) \(\Rightarrow0< m< 1\)
Lời giải:
Ta có:
\(y'=(e^x+e^{-x})'=e^x-e^{-x}=e^x-\frac{1}{e^x}\)
\(y'=0\Leftrightarrow e^x-\frac{1}{e^x}=0\Leftrightarrow e^{2x}-1=0\)
\(\Leftrightarrow e^{2x}=1\Leftrightarrow 2x=0\Leftrightarrow x=0\)