K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

bạn học lớp mấy vậy (^-^)

17 tháng 12 2019

Đặt: d: y = ( m+1 ) x + 3

+) TH1: m = -1

=> d: y = 3

=> Khoảng cách của gốc tọa độ tới d là: 3 (1)

+) Th2: m khác -1.

Giao điểm của d với Ox là : A ( \(-\frac{3}{m+1};0\))

=> \(OA=\left|\frac{3}{m+1}\right|\)

Giao điểm của d với Oy là: \(B\left(0;3\right)\)

=> OB = 3.

Kẻ OH vuông với d tại H => AH  là khoảng cách từ O tới d

Xét tam giác OAB vuông tại O. Có OH là đường cao:

=> \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{\left(m+1\right)^2}{9}+\frac{1}{9}>\frac{1}{9}\)vì m khác 1 => \(\left(m+1\right)^2>0\)

=> \(OH< 3\)

=> Khoảng cách từ gốc tọa độ đến d nhỏ hơn 3 (2)

Từ (1); (2) Khoảng cách từ O đến d có giá trị lớn nhất là 3 đạt tại m = -1.

16 tháng 10 2020

len google bn oi

22 tháng 9 2020

2) Đẳng thức điều kiện tương đương với \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1\Rightarrow1+a,1+b,1+c\ne0\)

Ta có: \(S=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1}{1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)}\)\(+\frac{1}{1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)}\)

\(=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1+a}{\left(1+a\right)\left[1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)\right]}\)\(+\frac{\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\text{[}1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)\text{]}}=\frac{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}=1\)

18 tháng 12 2015

Gọi  d laf khoảng cách từ O đến d

+ m +1 =0 => m =-1 => d =/ -m/ = 1  (1)

+m =0 => d =0 (2)

+ m khác - 1 ; 0

         x =0 => y =-m  A( 0 ; -m)

         y =0 => x =\(\frac{m}{m+1}\) B(\(\frac{m}{m+1}\); 0)

Áp dụng HTL trong tam gics vuông OAB

=> \(\frac{1}{d^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Rightarrow\frac{1}{d^2}=\frac{1}{m^2}+\frac{\left(m+1\right)^2}{m^2}\Rightarrow d^2=\frac{m^2}{\left(m+1\right)^2+1}=\frac{1}{2\left(\frac{1}{m^2}+\frac{1}{m}+\frac{1}{4}\right)+\frac{1}{2}}=\frac{1}{\left(\frac{1}{m}+\frac{1}{2}\right)^2+\frac{1}{2}}\le2\)

=> \(Maxd=\sqrt{2}\) khi  m =-2  (3)

(1)(2)(3) => \(d=\sqrt{2}\)

 

 

29 tháng 2 2020

\(1,y=\left(m-2\right)x+3+1\)      \(\left(d\right)\)

\(\left(d\right)\) đi qua \(A\left(1;-1\right)\)

\(\Rightarrow-1=m-2+m+1\)

\(\Rightarrow m=0\)

\(2,y=1-3x\left(d'\right)\)

Để: \(\left(d\right)//\left(d'\right)\)

\(\Leftrightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-2=-3\\m+1\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne0\end{cases}}\)

\(3,\) Gọi \(A\) là giao điểm của \(\left(d\right)\) với \(Ox\)

\(B\) là giao điểm của \(\left(d\right)\) với \(Oy\)

Tọa độ \(A:\hept{\begin{cases}\left(m-2\right)x+m+1=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m+1}{2-m}\\y=0\end{cases}}\)

Tọa độ \(B:\hept{\begin{cases}x=0\\m+1=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=m+1\end{cases}}\)

Độ dài \(OA:\sqrt{\left(\frac{m+1}{2-m}\right)^2}=|\frac{m+1}{2-m}|\)

Độ dài \(OB:\sqrt{\left(m+1\right)^2}=|m+1|\)

Kẻ \(OH\perp AB\) ta được: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\) 

\(\Leftrightarrow1=\frac{1}{\left(\frac{m+1}{2-m}\right)^2}+\frac{1}{\left(m+1\right)^2}\)

\(\Leftrightarrow1=\frac{\left(2-m\right)^2}{\left(m+1\right)^2}+\frac{1}{\left(m+1\right)^2}\)

\(\Leftrightarrow\left(m+1\right)^2=m^2-4m+4+1\)

\(\Leftrightarrow m^2+2m+1=m^2-4m+5\)

\(\Leftrightarrow m=\frac{2}{3}\)

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

** Sửa đề: $m\neq 0; m\neq -1$

Lời giải:

Gọi đths đã cho là $(d)$.

Gọi $A,B$ lần lượt là giao điểm của $(d)$với trục $Ox, Oy$.

Do $A\in Ox$ nên $y_A=0$

$A\in (d)\Rightarrow y_A=mx_A+x_A+1$

$\Leftrightarrow 0=x_A(m+1)+1$

$\Leftrightarrow x_A=\frac{-1}{m+1}$

Do $B\in Oy$ nên $x_B=0$

$y_B=mx_B+x_B+1=m.0+0+1=1$

Gọi $h$ là khoảng cách từ gốc tọa độ đến $(d)$. 

Theo hệ thức lượng trong tam giác vuông:

$\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}$

$\Leftrightarrow \frac{1}{h^2}=\frac{1}{x_A^2}+\frac{1}{y_B^2}$

$\Leftrightarrow \frac{1}{h^2}=1+(m+1)^2$

Với $m\neq -1$ thì không tìm được min $1+\frac{1}{(m+1)^2}$, tức là không tìm được max h.