K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2023

Bài 1:

Hàm số y=(m-3)x+4 đồng biến trên R khi m-3>0

=>m>3

Hàm số y=(m-3)x+4 nghịch biến trên R khi m-3<0

=>m<3

Bài 4:

a: Vì \(a=3-\sqrt{2}>0\)

nên hàm số \(y=\left(3-\sqrt{2}\right)x+1\) đồng biến trên R

b: Khi x=0 thì \(y=0\left(3-\sqrt{2}\right)+1=1\)

Khi x=1 thì \(y=\left(3-\sqrt{2}\right)\cdot1+1=3-\sqrt{2}+1=4-\sqrt{2}\)

Khi \(x=\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\cdot\sqrt{2}+1=3\sqrt{2}-2+1=3\sqrt{2}-1\)

Khi \(x=3+\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)-1\)

=9-4-1

=9-5

=4

Khi \(x=3-\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)^2-1\)

\(=11-6\sqrt{2}-1=10-6\sqrt{2}\)

24 tháng 10 2021

a, Vì \(5-3\sqrt{2}>0\) nên hs đồng biến trên R

b, \(x=5+3\sqrt{2}\Leftrightarrow y=25-18+\sqrt{2}-1=6+\sqrt{2}\)

c, \(y=0\Leftrightarrow\left(5-3\sqrt{2}\right)x+\sqrt{2}-1=0\Leftrightarrow x=\dfrac{1-\sqrt{2}}{5-3\sqrt{2}}\)

\(\Leftrightarrow x=\dfrac{\left(1-\sqrt{2}\right)\left(5+3\sqrt{2}\right)}{7}=\dfrac{-2\sqrt{2}-1}{7}\)

25 tháng 4 2018

Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta được bảng sau:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Hàm số đã cho là hàm số nghịch biến trên R vì khi giá trị của biến x tăng lên mà giá trị tương ứng f(x) lại giảm đi.

12 tháng 11 2017

a) Ta có a = 1- √5 < 0 nên hàm số đã cho nghịch biến trên R.

b) Khi x = 1 + √5 ta có:

    y = (1 - √5).(1 + √5) - 1 = (1 - 5) - 1 = -5

c) Khi y = √5 ta có:

    √5 = (1 - √5)x - 1

=> √5 + 1 = (1 - √5)x

Để học tốt Toán 9 | Giải bài tập Toán 9

(hoặc trục căn thức ở mẫu như dưới đây:

Để học tốt Toán 9 | Giải bài tập Toán 9

13 tháng 11 2021

Cho hàm số y=(1-√5)x-1
a, Hàm số đồng biến hay nghịch biến trên R?vì sao
Hàm số nghịch biến vi (1-√5<0
b,Tính y khi x=1+√5
y=(1-√5)(1+√5)-1
y = -5

23 tháng 11 2023

a)

Ta thấy \(\sqrt{3}-2< 0\) nên hàm số trên nghịch biến trên R

b) 

\(\sqrt{3}-7=\left(\sqrt{3}-2\right)x+5\)

\(\Leftrightarrow\sqrt{3}-12=\left(\sqrt{3}-2\right)x\)

\(\Leftrightarrow x=\dfrac{\sqrt{3}-12}{\sqrt{3}-2}\)

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:

a. Ta thấy: $(\sqrt{3}-1)(3-1)=2(\sqrt{3}-1)>0$ nên hàm số trên là hàm đồng biến trên $\mathbb{R}$

b.

$F(0)=2(\sqrt{3}-1).0+1=1$
$F(\sqrt{3}+1)=2(\sqrt{3}-1)(\sqrt{3}+1)+1=2(3-1)+1=5$

$F[(\sqrt{3}+1)(3+1)]=F[4(\sqrt{3}+1)]=2(\sqrt{3}-1).4(\sqrt{3}+1)+1$

$=8(3-1)+1=17$

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:
a. Vì $\sqrt{3}-1>0$ nên hàm trên là hàm đồng biến trên $\mathbb{R}$

b.

$F(0)=(\sqrt{3}-1).0+1=1$

$F(\sqrt{3}+1)=(\sqrt{3}-1)(\sqrt{3}+1)+1=(3-1)+1=3$

23 tháng 11 2018

a, Vì \(1-\sqrt{5}< 0\)nên hàm nghịch biến

b, \(x=1+\sqrt{5}x\)

\(\Leftrightarrow x-x\sqrt{5}=1\)

\(\Leftrightarrow x\left(1-\sqrt{5}\right)=1\)

\(\Leftrightarrow x=\frac{1}{1-\sqrt{5}}\)

Khi đó \(y=\left(1-\sqrt{5}\right).\frac{1}{1-\sqrt{5}}-1=1-1=0\)

b, \(y=-\sqrt{5}\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)x-1=-\sqrt{5}\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)x=1-\sqrt{5}\)

<=> x = 1

21 tháng 7 2020

a) Ta có \(a=1-\sqrt{5}< 0\) nên hàm số đã cho nghịch biến trên R.

b) Khi \(x=1+\sqrt{5}\) ta có:

\(y=\left(1-\sqrt{5}\right).\left(1+\sqrt{5}\right)-1=\left(1-5\right)-1=-5\)