K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: d'//d

=>d': 3x-y+c=0

Thay x=3 và y=-2 vào (d'), ta được:

c+9+2=0

=>c=-11

b: x=6+21t và y=1-3t

=>(d2) đi qua A(6;1) và có VTCP là (21;-3)=(7;-1)

=>VTPT là (1;7)

M(4;-14)

Phương trình (d2) là:

1(x-6)+7(y-1)=0

=>x-6+7y-7=0

=>x+7y-13=0

=>(d3): x+7y+c=0

Thay x=4 và y=-14 vào (d3),ta được:

c+4-98=0

=>c=94

3 tháng 12 2021

Gọi các đồ thị có CT chung là \(ax+b\)

\(a,\Leftrightarrow\left\{{}\begin{matrix}-a+b=-5\\a=0;b\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-5\end{matrix}\right.\Leftrightarrow\left(d_1\right):y=-5\\ b,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\a=2;b\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\Leftrightarrow\left(d_2\right):y=2x+7\\ c,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow\left(d_3\right):y=-2x+3\\ d,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b=0\end{matrix}\right.\Leftrightarrow\left(d_4\right):y=-5x\)

3 tháng 12 2021

câu c bạn giải kỹ hơn đc ko 

10 tháng 3 2022

Gọi đường thẳng đi qua A là d'.

a) Ta có: \(d'\perp d.\)

\(\Rightarrow\) VTPT của d là VTCP của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)

b) Ta có: \(d'//d.\)

\(\Rightarrow\) VTPT của d là VTPT của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6

 

a: Δ//d

=>Δ: 2x-y+c=0

Thay x=1 và y=-2 vào Δ, ta được:

c+2+2=0

=>c=-4

b: B thuộc d nên B(x;2x+3)

M(1;-2); A(0;3)

\(\overrightarrow{MA}=\left(-1;5\right);\overrightarrow{MB}=\left(x-1;2x+5\right)\)

ΔBAM vuông tại M

=>-1(x-1)+5(2x+5)=0

=>-x+1+10x+25=0

=>9x=-26

=>x=-26/9

=>B(-26/9;-25/9)

1 tháng 5 2023

Ta có: \(\Delta//d\Rightarrow\Delta:2x-3y+c=0\left(c\ne-1\right)\)

\(A\left(1;2\right)\in\Delta:2\cdot1-3\cdot2+c=0\)

\(\Leftrightarrow c=4\)

Vậy: \(\Delta:2x-3y+4=0\)

Vì (Δ)//d nên Δ: 2x-3y+c=0

Thay x=1 và y=2 vào Δ, ta được:

c+2-6=0

=>c=4

19 tháng 3 2021

1,\(\overrightarrow{n}\)d=(2;-4)   

d:  2(x+1)-4(y-1)=0⇔2x-4y+6=0

2) AM nhỏ nhất khi AM vuông góc với D

\(\overrightarrow{n}\)AM=(4;2)

AM:  4(x+1)+2(y-1)=0⇔4x+2y+2=0

M=AM\(\cap\)D⇒Tọa độ điểm M là nghiệm của hệ:2x-4y=-1

                                                                        4x+2y=-2

⇒M(-1/2;0)

20 tháng 3 2021

cảm ơn nà

5 tháng 3 2022

\(\Delta:2x+3y-1=0.\)

\(\Rightarrow\) VTPT của \(\Delta\) là \(\overrightarrow{n_{\left(\Delta\right)}}=\left(2;3\right).\)

Phương trình đường thẳng \(\left(d\right)\) song song với đường thẳng \(\Delta:2x+3y-1=0.\) 

\(\Rightarrow\) VTPT của đường thẳng \(\Delta\) cũng là VTPT của đường thẳng \(\left(d\right).\)

\(\Rightarrow\) VTPT của \(\left(d\right)\) là \(\overrightarrow{n_{\left(d\right)}}=\left(2;3\right).\)

Ta có đường thẳng \(\left(d\right)\) nhận \(\overrightarrow{n_{\left(d\right)}}=\left(2;3\right)\) làm VTPT; đi qua điểm \(A\left(3;-1\right).\)

\(\Rightarrow\) Phương trình đường thẳng \(\left(d\right)\) là:

\(2\left(x-3\right)+3\left(y+1\right)=0.\\ \Leftrightarrow2x-6+3y+3=0.\\ \Leftrightarrow2x+3y-3=0.\)

2 tháng 3 2019

Đáp án: B (Hướng dẫn. Loại A và C vì hệ số a ≠ -2; kiểm tra trực tiếp B và D).