Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b, PT giao điểm Ox và (d) là \(y=0\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow A\left(\dfrac{3}{2};0\right)\Leftrightarrow OA=\dfrac{3}{2}\)
PT giao điểm Oy và (d) là \(x=0\Leftrightarrow y=-3\Leftrightarrow B\left(0;-3\right)\Leftrightarrow OB=3\)
Do đó \(S_{OAB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{3}{2}\cdot3=\dfrac{9}{4}\left(đvdt\right)\)
Gọi OH là hình chiếu từ O đến (d)
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{5}{9}\Leftrightarrow OH^2=\dfrac{9}{5}\Leftrightarrow OH=\dfrac{3\sqrt{5}}{5}\)
Vậy k/c từ O đến (d) là \(\dfrac{3\sqrt{5}}{5}\)

Xét d cắt với Ox khi đó \(y=0\Rightarrow-4x+3=0\Leftrightarrow x=\frac{3}{4}\) Vậy giao với Ox tại điểm \(\left(\frac{3}{4};0\right)\)
d cắt với Oy khi đó : \(x=0\Rightarrow y=-4.0+3=3\) vậy giao với Oy tại điểm \(\left(0,3\right)\)

c: Thay y=0 vào (d), ta được:
3x-3=0
hay x=1
Vậy: A(1;0)
Thay x=0 vào (d), ta được:
y=3x0-3=-3
Vậy: B(-3;0)
Diện tích ΔOAB là:
\(S_{OAB}=\dfrac{OA\cdot OB}{2}=\dfrac{3}{2}\left(đvdt\right)\)

c: Thay y=0 vào (d), ta được:
3x-3=0
hay x=1
Vậy: A(1;0)
Thay x=0 vào (d), ta được:
\(y=3\cdot0-3=-3\)
Vậy: B(0;-3)
Diện tích tam giác OAB là:
\(S=\dfrac{OA\cdot OB}{2}=\dfrac{1\cdot3}{2}=\dfrac{3}{2}\left(đvdt\right)\)
b: Khoảng cách từ (O) đến (d) là:
\(\dfrac{3\cdot1}{\sqrt{10}}=\dfrac{3\sqrt{10}}{10}\left(đvđd\right)\)

Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
b: Tọa độ của điểm A là:
\(\left\{{}\begin{matrix}2x-3=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=0\end{matrix}\right.\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x=0\\y=2\cdot0-3=-3\end{matrix}\right.\)