K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Lời giải:

Nếu $(1)$ song song với $Ox$ thì $2m-3=0$

Khi đó, ptđt $(1)$ là: $y=-1$. Khoảng cách từ $O$ đến $(1)$ là: $|-1|=1$

Nếu $(1)$ song song với $Oy$ không xét, vì hệ số của $y$ khác $0$ nên $(1)$ luôn cắt $Oy$

Nếu $(1)$ cắt được cả Ox, Oy thì trước tiên $2m-3\neq 0\Leftrightarrow m\neq \frac{3}{2}$

Gọi $A, B$ là giao của $(1)$ với lần lượt trục $Ox, Oy$

$A\in Ox$ nên $y_A=0$. Ta có:

$0=y_A=(2m-3)x_A-1\Rightarrow x_A=\frac{1}{2m-3}$

$B\in Oy$ nên $x_B=0$. Ta có:

$y_B=(2m-3)x_B-1=-1$

Theo hệ thức lượng trong tam giác vuông, khoảng cách từ $O$ đến $(1)$ (gọi là $d$) thỏa mãn:
$\frac{1}{d^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}$

$=(2m-3)^2+1$

Để $d_{\max}$ thì $\frac{1}{d^2}$ min hay $(2m-3)^2+1$ min 

Điều này xảy ra khi $(2m-3)^2=0$ (vô lý vì $m\neq \frac{3}{2}$)

Vậy khoảng cách max là $1$ khi $m=\frac{3}{2}$

15 tháng 12 2021

\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua

\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

Đặt \(OH^2=t\)

\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)

25 tháng 1 2020

Bạn viết sai rồi, đường thẳng y-mx+2 =0 hay y=mx+2 vậy bạn?

6 tháng 2 2020

hjhj , thank bạn nha , nhưng câu này mk hỏi năm 2016 , giờ mình học lớp 12 rồi !!!