Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Phương pháp:
Bảng biến thiên:
Phương trình đã cho có 3 nghiệm ⇔ phương trình ẩn t có hai nghiệm phân biệt trong đó có một nghiệm bằng 0 và một nghiệm dương ⇔ đường thẳng y = 2-m cắt đồ thị hàm số tại một điểm có hoành độ bằng 0 và điểm còn lại có hoành độ dương.
Đáp án A
Vẽ đồ thị hàm số y = x 4 − 2 x 2
Để phương trình x 2 x 2 − 2 = m có đúng 4 nghiệm thực phân biệt thì m = 1
Chọn D.
Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.
Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5
Chọn B
Đặt t = x 2 - 2 x với x ∈ - 3 2 ; 7 2
Bảng biến thiên của hàm số t = x 2 - 2 x trên đoạn - 3 2 ; 7 2 là:
Dựa vào bảng biến thiên t ∈ - 1 ; 21 4
Khi đó phương trình f ( x 2 - 2 x ) = m (1) trở thành f(t)=m (2).
Ta thấy, với mỗi giá trị t ∈ ( - 1 ; 21 4 ] ta tìm được hai giá trị của x ∈ - 3 2 ; 7 2
Do đó, phương trình (1) có 4 nghiệm thực phân biệt thuộc - 3 2 ; 7 2 khi và chỉ khi phương trình (2) có hai nghiệm thực phân biệt thuộc ( - 1 ; 21 3 ]
Đường thẳng y=m cắt đồ thị hàm số y=f(t) tại hai điểm phân biệt có hoành độ thuộc - 1 ; 21 4
Dựa vào đồ thị ta thấy chỉ có hai giá trị nguyên của m thỏa yêu cầu là m=3 và m=5
Đáp án C
Với f x > 0 , ∀ x ∈ ℝ . Xét biểu thức f ' x f x = 2 - 2 x *
Lấy nguyên hàm 2 vế (*), ta được ∫ d f x f x = ∫ 2 - 2 x d x
⇔ ∫ d f x f x = - x 2 + 2 x + C ⇔ ln f x = - x 2 + 2 x + C
Mà f(0) =1 suy ra C = lnf(0) = ln1 = 0. Do đó f x = e - x 2 + 2 x
Xét hàm số f x = e - x 2 + 2 x trên - ∞ ; + ∞ , có f ' x = - 2 x + 2 = 0 ⇔ x = 1
Tính giá trị f 1 = e ; lim x → - ∞ f x = 0 ; lim x → - ∞ f x = 0
Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt ⇔ 0 < m < e .
Đáp án B