Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì đồ thị hàm số đi qua điểm \(A\left(-1;\frac{5}{2}\right)\) nên tọa độ của A thỏa mãn phương trình sau: \(\frac{a+b}{-2}=\frac{5}{2}\Rightarrow a+b=-5\)(*)
ta tính y' có:
\(y'=\frac{\left(2ax-b\right)\left(x-1\right)-\left(ax^2-bx\right)}{\left(x-1\right)^2}=\frac{2ax^2-2ax-bx+b-ax^2+bx}{\left(x-1\right)^2}=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\)
vì hệ số góc của tiếp tuyến tại điểm O(0;0) bằng 3 nên \(y'\left(O\right)=\frac{b}{\left(0-1\right)^2}=-3\Rightarrow b=-3\)
thay b=-3 vào (*) ta tìm được a=-2
vậy a=-2;b=-3
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Đáp án C.
Ta có:
g x = x . f 2 x − 1 ⇒ g ' x = f 2 x − 1 + 2 x . f ' 2 x − 1
Suy ra g ' 1 = f 1 + 2 f ' 1 mà d 1 vuông góc với d 2 ⇒ f ' 1 . g ' 1 = − 1
⇔ f ' 1 . f 1 + 2 f ' 1 = − 1 ⇔ 2. f ' 1 2 + f 1 + 1 = 0 ( * )
Phương trình (*) có nghiệm khi và chỉ khi:
Δ = f 1 2 − 4.2 ≥ 0 ⇔ f 1 ≥ 2 2 .
Chọn đáp án C
Ta có
Đường thẳng d 1 là tiếp tuyến của đồ thị hàm số y = f x tại điểm x = 1 nên có hệ số góc là k 1 = f ' 1
Đường thẳng d 2 là tiếp tuyến của đồ thị hàm y = g x = x . f 2 x - 1 tại điểm x = 1 nên có hệ số góc là
k 2 = g ' 1 = f 1 + 2 f ' 1
Mà d 1 ⊥ d 2 nên
Do f ' 1 ≠ 0 nên
Đặt f ' 1 = t t ≠ 0
Xét hàm số f t = 1 + 2 t 2 t
* Nếu t > 0 thì
* Nếu t < 0 thì
Vậy h t ≤ 2 2 , ∀ t ≠ 0 hay f 1 ≥ 2 2
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
Từ giả thiết suy ra tiếp tuyến có hệ số góc bằng -1
Hai tiếp điểm có hoành độ là nghiệm của phương trình y ' x 0 = - 1
Chọn C.