K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 5 2019

\(x>1\)

\(f'\left(x\right)=\left(2x+2\right)\sqrt{x-1}+\frac{x^2+2x}{2\sqrt{x-1}}=\frac{5x^2+2x-4}{2\sqrt{x-1}}\)

\(f'\left(x\right)\ge0\Leftrightarrow\frac{5x^2+2x-4}{\sqrt{x-1}}\ge0\Leftrightarrow5x^2+2x-4\ge0\)

\(\Rightarrow x>1\)

13 tháng 5 2019

Mình k hiểu bước đầu lắm.Bạn giải thích hộ mình với

NV
12 tháng 5 2019

Tiếp tuyến song song trục hoành \(\Rightarrow\) hệ số góc của tiếp tuyến bằng 0 \(\Rightarrow\) đó là tiếp tuyến tại các cực trị

\(f'\left(x\right)=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-4\\x=-1\Rightarrow y=-5\\x=1\Rightarrow y=-5\end{matrix}\right.\)

Vậy các điểm đó là \(A\left(0;-4\right);B\left(-1;-5\right);C\left(-1;-5\right)\) (1 chú ý nhỏ là tiếp tuyến tại B và C trùng nhau)

6 tháng 5 2017

Ta có:f'(x)=4x-1

=>f'(x)\(\sqrt{x^2+1}=2x^2+2x+1\)

<=>(4x-1)\(\sqrt{x^2+1}=2x^2+2x+1\)

Nhận xét: vế phải > 0 nên đk để phương trình có nghiệm:x>\(\dfrac{1}{4}\)

Từ điều kiện trên phương trình

<=>(16x2-8x+1)(x2+1)=4x4+8x3+8x2+4x+1

<=>16x4+16x2-8x3-8x+x2+1=4x4+8x3+8x2+4x+1

<=>12x4-16x3+9x2-12x=0

<=>x(12x3-16x2+9x-12)=0

<=>x(3x-4)(4x2+3)=0

<=>x=0 hoặc x=\(\dfrac{4}{3}\)(do 4x2+3>0)

Vậy...

8 tháng 7 2017

x=0 loại

11 tháng 4 2017

x3 vs 3x...???

14 tháng 12 2019

\(\Leftrightarrow\left(2\sin x+1\right)\left(\sqrt{3}\sin x+2\cos^2x-1\right)-\sin2x-\cos x=0\Leftrightarrow\left(2\sin x+1\right)\left(\sqrt{3}\sin x+2\cos^2x-1-2\cos^2x+1-\cos x\right)=0\Leftrightarrow\left(2\sin x+1\right)\left(\sqrt{3}\sin x-\cos x\right)=0\Rightarrow\left[{}\begin{matrix}2\sin x+1=0\\\sqrt{3}\sin x-\cos x=0\end{matrix}\right.\)

15 tháng 4 2021

\(f'\left(x\right)=\left(\sqrt[3]{x}\right)'=\dfrac{1}{3\sqrt[3]{x^2}}\\ f'\left(8\right)=\dfrac{1}{3\sqrt[3]{8^2}}=\dfrac{1}{12}\)

NV
15 tháng 5 2019

Câu 1:

Đặt \(f\left(x\right)=x^3+mx^2+\left(m-3\right)x-1\)

Ta có \(f\left(0\right)=-1\) ; \(f\left(-1\right)=1\)

\(\Rightarrow f\left(0\right).f\left(-1\right)< 0\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

Mặt khác \(\left\{{}\begin{matrix}f\left(0\right)=-1< 0\\\lim\limits_{x\rightarrow+\infty}=+\infty\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

\(\left\{{}\begin{matrix}f\left(-1\right)=1>0\\\lim\limits_{x\rightarrow-\infty}=-\infty\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm thuộc \(\left(-\infty;-1\right)\)

Vậy pt đã cho có 3 nghiệm phân biệt với mọi m

Câu 2:

\(f'\left(x\right)=x^2+2\left(m-1\right)x+m+1\)

Để \(f'\left(x\right)\ge0\) \(\forall x\) \(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m+1\right)\le0\)

\(\Leftrightarrow m^2-3m\le0\Leftrightarrow0\le m\le3\)

NV
15 tháng 5 2019

Câu 3:

Nhận thấy \(x=0\) không phải nghiệm

\(\Leftrightarrow2x^3+3x^2-2=-mx\)

\(\Leftrightarrow\frac{2x^3+3x^2-2}{x}=-m\)

Đặt \(f\left(x\right)=\frac{2x^3+3x^2-2}{x}\Rightarrow f'\left(x\right)=\frac{\left(6x^2+6x\right)x-\left(2x^3+3x^2-2\right)}{x^2}=\frac{4x^3+3x^2+2}{x^2}\)

\(f'\left(x\right)=\frac{4x^2\left(x+1\right)+2-x^2}{x^2}\Rightarrow f'\left(x\right)>0\) \(\forall x\in\left(-1;1\right)\)

\(\Rightarrow f\left(x\right)\) đồng biến trên \(\left(-1;1\right)\)

\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=+\infty\) ; \(\lim\limits_{x\rightarrow0^+}f\left(x\right)=-\infty\)

\(\Rightarrow y=-m\) luôn cắt đồ thị \(y=f\left(x\right)\) hay phương trình đã cho luôn có ít nhất 1 nghiệm trong khoảng \(\left(-1;1\right)\) với mọi m

NV
2 tháng 11 2021

Tất cả k dưới đây là \(k\in Z\)

1.

ĐKXĐ: \(1-2cosx\ne0\Rightarrow cosx\ne\dfrac{1}{2}\)

\(\Rightarrow x\ne\pm\dfrac{\pi}{3}+k2\pi\)

2.

\(cos2x-1=0\Rightarrow cos2x=1\)

\(\Rightarrow2x=k2\pi\)

\(\Rightarrow x=k\pi\)

b.

\(\sqrt{3}cotx-3=0\Rightarrow cotx=\sqrt{3}\)

\(\Rightarrow x=\dfrac{\pi}{6}+k\pi\)

c.

\(2sin^22x+sin2x-1=0\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=-\dfrac{\pi}{2}+k2\pi\\2x=\dfrac{\pi}{6}+k2\pi\\2x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{5\pi}{12}+k\pi\end{matrix}\right.\)

3.

Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt đã cho có nghiệm khi:

\(\sqrt{3}^2+2^2\ge m^2\)

\(\Rightarrow m^2\le7\)

\(\Rightarrow-\sqrt{7}\le m\le\sqrt{7}\)

2 tháng 11 2021

undefined

NV
22 tháng 5 2020

\(f'\left(x\right)=2x-2\)

a/ \(f'\left(1\right)=0\) ; \(f\left(1\right)=2\)

Phương trình tiếp tuyến: \(y=2\)

b/ \(4x-2y+5=0\Leftrightarrow y=2x+\frac{5}{2}\)

Tiếp tuyến song song d nên có hệ số góc bằng 2

\(\Rightarrow2x_0-2=2\Rightarrow x_0=2\)

\(f\left(2\right)=3\)

Pt tiếp tuyến: \(y=2\left(x-2\right)+3=0\Leftrightarrow y=2x-1\)

c/ \(x+4y=0\Rightarrow y=-\frac{1}{4}x\)

Tiếp tuyến vuông góc d \(\Rightarrow\) có hsg k thỏa mãn \(k.\left(-\frac{1}{4}\right)=-1\Rightarrow k=4\)

\(\Rightarrow2x_0-2=4\Rightarrow x_0=3\) ; \(f\left(3\right)=6\)

Pt tiếp tuyến: \(y=3\left(x-3\right)+6=3x-3\)

d/ Đường phân giác góc phần thứ thứ nhất có pt \(y=x\)

\(\Rightarrow\) Tiếp tuyến có hệ số góc -1

\(\Rightarrow2x_0-2=-1\Rightarrow x_0=\frac{1}{2}\) ; \(f\left(\frac{1}{2}\right)=\frac{9}{4}\)

Pt: \(y=-1\left(x-\frac{1}{2}\right)+\frac{9}{4}=-x+\frac{11}{4}\)