K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

\(f\left(0\right)=b;f\left(b\right)=ab+b;f\left(f\left(b\right)\right)=a^2b+b=2\)

\(f\left(1\right)=a+b;f\left(f\left(1\right)\right)=a\left(a+b\right)+b;f\left(f\left(f\left(1\right)\right)\right)=a\left(a\left(a+b\right)\right)+b=29\)

\(\hept{\begin{cases}a^2b+b=2\\a^3+a^2b+b=29\end{cases}}\Rightarrow a^3=27\Rightarrow\hept{\begin{cases}a=3\\b=\frac{1}{5}\end{cases}}\Rightarrow f\left(x\right)=3x+\frac{1}{5}\)

3 tháng 1 2017

ngonhuminh làm sai mà vẫn cho là đúng???

Cẩn thận \(f\left(f\left(f\left(1\right)\right)\right)=f\left(f\left(a+b\right)\right)=f\left(a\left(a+b\right)+b\right)=a\left[a\left(a+b\right)+b\right]+b\)

5 tháng 10 2017

b) Ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}\) ( tính chất dãy tỉ số bằng nhau)

\(=\frac{2a+2b+2c}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

Ta có:

\(b+c=2a\)

\(\Rightarrow2b+2c=4a\)

Mà 2c=a+b

\(\Rightarrow\)2b+a+b=4a

\(\Rightarrow3b=3a\)

\(\Rightarrow a=b\)

Chứng minh tương tự:b=c;a=c

Thay vào biểu thức:

\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2\times2\times2=8\)8

29 tháng 11 2016

1/

f(1)=1+a+b+c=0

=>a+b+c=-1

mà a+b=-16

nên -16+c=-1

c=15

f(2)=8+4a+2b+c=0

8+15+4a+2b=0

23+2(2a+b)=0

2(a+a+b)=-23

2(a-16)=-23

2a-32=-23

2a=-23+32

2a=9

a=4,5

=>b=-20,5

Vậy a=4,5

20 tháng 12 2016

bai 3 dap an la -25