Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hàm số f(x) thỏa mãn f(x)+3f(1/x)=x^2. với mọi x thuộc R.
Đúng với x = 2 . => f(2) + 3f(1/2) = 2^2 = 4
=> f(2) + 3f(1/2) = 4 ( 1 )
Đúng với x = 1/2 => f(1/2) + 3f(2) = (1/2)^2 = 1/4.
=> 3f(2) + f (1/2) = 1/4.=> 9f(2) + 3f(1/2) = 3/4 ( 2 )
Lấy (2) trừ (1) ta đc : 8 f(2) = 3/4 - 4 = -13/4
=> f(2) = -13 / 32
ta có: f(x) +3f(1/x) =x^2 với mọi x thuộc R
mà f(2)
=> f(2) +3f(1/2) = 2^2 =4 (1)
=> 3f(2) +f(1/2) =1/4 => 9f(2) +3f(1/2) = 3/4 (2)
=> (2) -(1) = 9f(2) +3f(1/2) - f(2) - 3f(1/2)
= 8f(2) = 3/4 -4
= -13/4
=> 8f(2) = -13/4
f(2) = -13/4 :8
f(2) = -13/32
p/s nha bn !!!!
\(f\left(x\right)+3f\left(\frac{1}{x}\right)=x^2\)
Tại x=2 \(\Rightarrow f\left(2\right)+3f\left(\frac{1}{2}\right)=2^2=4\left(1\right)\)
Tại x=\(\frac{1}{2}\)\(\Rightarrow f\left(\frac{1}{2}\right)+3f\left(2\right)=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow3f\left(\frac{1}{2}\right)+9f\left(2\right)=\frac{3}{4}\)
\(\Rightarrow9f\left(2\right)+3f\left(\frac{1}{2}\right)=\frac{3}{4}\left(2\right)\)
Từ (1)(2) \(\Rightarrow\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\9f\left(2\right)+3f\left(\frac{1}{2}\right)=\frac{3}{4}\end{cases}\Rightarrow8f\left(2\right)=\frac{3}{4}-4=\frac{-13}{4}}\)
\(\Rightarrow f\left(2\right)=\frac{-13}{32}\)
Với x=2 ta có \(f\left(2\right)-3f\left(\frac{1}{2}\right)=4\left(1\right)\)
Với x=1/2 ta có:\(f\left(\frac{1}{2}\right)-3f\left(2\right)=\frac{1}{4}\Rightarrow3f\left(\frac{1}{2}\right)-9f\left(2\right)=\frac{3}{4}\left(2\right)\)
Lấy (1) cộng (2) ta có
\(\Rightarrow f\left(2\right)-3f\left(\frac{1}{2}\right)+3f\left(\frac{1}{2}\right)-9f\left(2\right)=4+\frac{3}{4}\)
\(\Rightarrow-8f\left(2\right)=\frac{19}{4}\)
\(\Rightarrow f\left(2\right)=-\frac{19}{32}\)
thay x=2 và x=1/2 ta có
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\end{cases}\Rightarrow f\left(2\right)=-\frac{13}{32}}\)
\(f\left(2\right)+3f\left(\frac{1}{2}\right)=4\) (1)
\(f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\)\(\Leftrightarrow\)\(3f\left(\frac{1}{2}\right)+9f\left(2\right)=\frac{3}{4}\) (2)
(1) - (2) \(\Leftrightarrow\)\(f\left(2\right)+3f\left(\frac{1}{2}\right)-3f\left(\frac{1}{2}\right)-9f\left(2\right)=4-\frac{3}{4}\)
\(\Leftrightarrow\)\(-8f\left(2\right)=\frac{13}{4}\)\(\Leftrightarrow\)\(f\left(2\right)=\frac{-13}{32}\)