Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp:
Số nghiệm của phương trình f(x) = m bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m
Cách giải:
Số nghiệm của phương trình f(x) = m(*) bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m
⇒ Để (*) có 3 nghiệm thực phân biệt thì m ∈ (-1;3)
Chọn D.
Số nghiệm của phương trình f(x) = m bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.
Dựa vào đồ thị, điều kiện để phương trình có 4 nghiệm phân biệt là -4 < m < 0.
Đáp án D
Ta có . Số nghiệm của phương trình chính là số giao điểm của đồ thị hàm số H và đường thẳng .
Dựa vào bảng biến thiên ta thấy có ba nghiệm phân biệt khi:
.
+ Trước tiên từ đồ thị hàm số y= f( x) , ta suy ra đồ thị hàm số y = |f(x)| như hình dưới đây:
Phương trình 2|f(x)| - m = 0 hay |f(x)| = m/2 là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x) và đường thẳng y= m/2.
Dựa vào đồ thị hàm số y = |f(x)|, ta có ycbt trở thành:
Chọn A.
Đáp án D
Phương pháp:
Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m
Cách giải:
Từ đồ thị hàm số y = f(x) ta có đồ thị hàm số y = |f(x)| như hình bên:
Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m
⇒ Để phương trình |f(x)| = m có 4 nghiệm phân biệt thì 1 < m < 3
Đặt \(f\left(x\right)=t\Rightarrow t^3-3t+2=m\)
- Với \(\left[{}\begin{matrix}m< 0\\m>4\end{matrix}\right.\) pt có nghiệm duy nhất
- Với \(0< m< 4\) pt có 3 nghiệm pb
- Với \(\left[{}\begin{matrix}m=0\\m=4\end{matrix}\right.\) pt có 2 nghiệm pb
Xét pt \(f\left(x\right)=t\Leftrightarrow x^7+x^5-x^4+x^3-2x^2+2x-10=t\)
Ta có \(f'\left(x\right)=7x^6+5x^4-4x^3+3x^2-4x+2\)
\(=7\left(x^3-\frac{2}{7}\right)^2+5x^4+3\left(x-\frac{2}{3}\right)^2+\frac{2}{21}>0\)
\(\Rightarrow f\left(x\right)\) đồng biến \(\Rightarrow f\left(x\right)=t\) có nghiệm duy nhất
\(\Rightarrow\) Để pt có 3 nghiệm pb thì \(0< m< 4\)