Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Do đó phương trình f[f(sinx)] = m có nghiệm thuộc khoảng 0 ; π khi và chỉ khi phương trình
f(t) = m có nghiệm thuộc nửa khoảng [-1;1]
Dựa vào đồ thị, suy ra
Chọn C.

Chọn C.
Phương pháp:
+) Dựa vào đồ thị hàm số, tìm điều kiện của m để phương trình f(t) = m có nghiệm thỏa mãn ĐK tìm được ở bước trên

Chọn đáp án B
Phương pháp
+) Đặt t=cosx, xác định khoảng giá trị của t, khi đó phương trình trở thành f(t)=m.
+) Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và y=m song song với trục hoành.
Cách giải
Đặt t=cosx ta có
Khi đó phương trình trở thành f(t)=m.
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và y=m song song với trục hoành.
Dựa vào đồ thị hàm số y=f(x) ta thấy phương trình f(t)=m có 2 nghiệm phân biệt thuộc [-1;1) khi và chỉ khi mÎ(0;2).
Chọn D.
Phương pháp:
+ Đặt 3 sin x - cos x - 1 2 cos x - sin x + 4 = t biến đổi đưa về a sin x + b cos x = c , phương trình này có nghiệm khi a 2 + b 2 ≥ c 2 từ đó ta tìm ta được điều kiện của t.
+ Dựa vào đồ thị hàm số để xác định điều kiện nghiệm của phương trình f x = f t
Từ đó suy ra điều kiện có nghiệm của phương trình đã cho.
Chú ý rằng nếu hàm f t đồng biến (hoặc nghịch biến) trên (a;b) thì phương trình f u = f v nếu có nghiệm thì đó là nghiệm duy nhất trên a ; b ⇔ u = v