Cho hàm số f x  liên tục trên R và có đồ thị như hình vẽ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

Chọn D.

Phương pháp:

+ Đặt 3 sin x - cos x - 1 2 cos x - sin x + 4 = t  biến đổi đưa về a sin x + b cos x = c , phương trình này có nghiệm khi a 2 + b 2 ≥ c 2  từ đó ta tìm ta được điều kiện của t.

+ Dựa vào đồ thị hàm số để xác định điều kiện nghiệm của phương trình f x = f t  

Từ đó suy ra điều kiện có nghiệm của phương trình đã cho.

Chú ý rằng nếu hàm f t  đồng biến (hoặc nghịch biến) trên (a;b) thì phương trình f u = f v  nếu có nghiệm thì đó là nghiệm duy nhất trên a ; b ⇔ u = v  

28 tháng 3 2017

18 tháng 7 2019

9 tháng 6 2017

Do đó phương trình f[f(sinx)] = m có nghiệm thuộc khoảng  0 ; π khi và chỉ khi phương trình

f(t) = m có nghiệm thuộc nửa khoảng [-1;1]

Dựa vào đồ thị, suy ra 

Chọn C.

5 tháng 12 2017

6 tháng 9 2019

12 tháng 9 2019

25 tháng 1 2018

Chọn đáp án B

21 tháng 1 2017

10 tháng 5 2019

Chọn C.

Phương pháp: 

+) Dựa vào đồ thị hàm số, tìm điều kiện của m để phương trình f(t) = m có nghiệm thỏa mãn ĐK tìm được ở bước trên

24 tháng 3 2019

Chọn đáp án B

Phương pháp

+) Đặt t=cosx, xác định khoảng giá trị của t, khi đó phương trình trở thành f(t)=m.

+) Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và y=m song song với trục hoành.

Cách giải

Đặt t=cosx ta có

Khi đó phương trình trở thành f(t)=m.

Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và y=m song song với trục hoành.

Dựa vào đồ thị hàm số y=f(x) ta thấy phương trình f(t)=m có 2 nghiệm phân biệt thuộc [-1;1) khi và chỉ khi mÎ(0;2).