K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 1

\(x^3+y^3=8-6xy\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-8+6xy=0\)

\(\Leftrightarrow\left(x+y\right)^3-2^3-3xy\left(x+y-2\right)=0\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2\left(x+y\right)+4\right]-3xy\left(x+y-2\right)=0\)

\(\Leftrightarrow\left(x+y-2\right)\left(x^2+y^2-xy+2x+2y+4\right)=0\)

\(\Leftrightarrow\left(x+y-2\right)\left(2x^2+2y^2-2xy+4x+4y+8\right)=0\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y-2=0\\\left(x-y\right)^2=\left(x+2\right)^2=\left(y+2\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+y=2\\x=y=-2\left(loại\right)\end{matrix}\right.\)

28 tháng 8 2020

Hằng đẳng thức:\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(x^3+y^3+6xy=8\)

\(\Leftrightarrow\left(x^3+y^3+\left(-2\right)^3+6xy\right)=0\)

\(\Leftrightarrow\left(x+y-2\right)\left(x^2+y^2+4-xy+2y+2x\right)=0\)

\(\Leftrightarrow x+y=2\)

5 tháng 10 2021

cho mik hỏi tí nhá bạn có thể giải thích rõ bước cuối cùng ko

 

27 tháng 10 2019

\(x^3+y^3=\left(x+y\right)^3-3\left(xy\right)\left(x+y\right)=1-3xy\)

Có: \(xy\le\frac{\left(x+y\right)^2}{4}\)với mọi x, y

Chứng minh: \(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow x^2+y^2+2xy\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\)đúng với mọi x, y.

=> \(xy\le\frac{1}{4}\)=> \(-3xy\ge-\frac{3}{4}\)

=> \(x^3+y^3=\left(x+y\right)^3-3\left(xy\right)\left(x+y\right)=1-3xy\ge1-\frac{3}{4}=\frac{1}{4}\)

"=" xảy ra <=> (x -y)^2 =0 <=> x =y.

18 tháng 3 2023

\(A=\dfrac{2\left(x^3+y^3\right)}{\left(x^4+y^2\right)\left(x^2+y^4\right)}=2.\dfrac{\left(x^3+y^3\right)}{x^4y^4+x^2y^2+x^6+y^6}\)

\(=2.\dfrac{\left(x^3+y^3\right)}{1+1+x^6+y^6}=2.\dfrac{x^3+y^3}{x^6+y^6+2x^3y^3}=2.\dfrac{x^3+y^3}{\left(x^3+y^3\right)^2}=\dfrac{2}{x^3+y^3}\left(1\right)\)

Áp dụng bất đẳng thức Cauchy ta có:

\(x^3+y^3+1\ge3\sqrt{xy.1}=3\)

\(\Rightarrow x^3+y^3\ge2\Rightarrow\dfrac{2}{x^3+y^3}\le1\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow A\le1\)

Dấu "=" xảy ra khi x=y=1.

Vậy MaxA là 1, đạt được khi x=y=1.

 

 

19 tháng 3 2023

Thanks!

7 tháng 3 2018

Đặt x+y/x-y = a

=> x-y/x+y = 1/a

Có : a + 1/a = 6

<=> (a + 1/a) = 36

<=> a^2+1/a^2+2 = 36

<=> a^2 + 1/a^2 = 34

A = a^3 + 1/a^3 = (a+1/a).(a^2-1+1/a^2)

   = 6.(34-1)

   = 198

Tk mk nha

(x+y+z)^2=x^2+y^2+z^2

=>2(xy+yz+xz)=0

=>xy+xz+yz=0

=>xy/xyz+xz/xyz+yz/xyz=0

=>1/x+1/y+1/z=0