K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM: $a^2+b^2\geq \frac{(a+b)^2}{2}$ và $a^2+b^2\geq 2ab$

$\Rightarrow a+b\leq 2$ và $ab\leq 1$

Áp dụng BĐT Bunhiacopxky:

$(a^3+b^3)(a+b)\geq (a^2+b^2)^2=4\Rightarrow a^3+b^3\geq frac{4}{a+b}\geq \frac{4}{2}=2$

$\Rightarrow a^3+b^3+4\geq 6(1)$

Lại có: $ab+1\leq 1+1=2(2)$

Từ $(1);(2)\Rightarrow P\geq \frac{6}{2}=3$ hay $P_{\min}=3$. Dấu "=" xảy ra khi $a=b=1$

-----------------

Tìm max:

$a^2+b^2=2\Rightarrow (a+b)^2=2(1+ab)\Rightarrow ab+1=\frac{(a+b)^2}{2}$

Đặt $a+b=t$ thì $ab+1=\frac{t^2}{2}$.

Dễ thấy $(a+b)^2=2(1+ab)\geq 2$ do $ab\geq 0$ nên $a+b\geq \sqrt{2}$ hay $t\geq \sqrt{2}$

Biến đổi $P$

$P=\frac{(a+b)(a^2+b^2-ab)+4}{ab+1}=\frac{(a+b)[3-(ab+1)]+4}{ab+1}$

$=\frac{t(3-\frac{t^2}{2})+4}{\frac{t^2}{2}}=\frac{t(6-t^2)+8}{t^2}=\frac{6}{t}+\frac{8}{t^2}-t\leq \frac{6}{\sqrt{2}}+\frac{8}{2}-\sqrt{2}$ do $t\geq \sqrt{2}$

Hay $P\leq 4+2\sqrt{2}$

Vậy $P_{\max}=4+2\sqrt{2}$ khi $(a,b)=(\sqrt{2},0)$ và hoán vị.

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Lê Anh Ngọc: vậy thì bạn có thể làm như sau.

Biến đổi y như phần tìm max, tức là có $P=\frac{6}{t}+\frac{8}{t^2}-t$

$t^2=(a+b)^2=a^2+b^2+2ab=2(a^2+b^2)-(a^2+b^2-2ab)=2(a^2+b^2)-(a-b)^2\leq 2(a^2+b^2)$

$\Leftrightarrow t^2\leq 4\Rightarrow t\leq 2$

Do đó: $P\geq \frac{6}{2}+\frac{8}{2^2}-2=3$

9 tháng 12 2018

2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)

Áp dụng BĐT AM-GM ta có:

\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)

\(S=\frac{17}{4}\Leftrightarrow a=4\)

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

9 tháng 12 2018

kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?

\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)

\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)

Dấu "=" xảy ra khi a = 4

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

2 tháng 10 2021

Tham khảo:

Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:  \(Q=\s... - Hoc24

4 tháng 6 2019

#)Giải :

Ta có : \(P=a^4+b^4+2-2-ab\)

Áp dụng BĐT cô si, ta có : 

\(a^4+1\ge2a^2\)dấu = xảy ra khi a = 1

\(b^4+1\ge2b^2\)dấu = xảy ra khi b = 1

Khi đó \(P\ge2a^2+2b^2-2-ab\)

           \(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)

           \(P\ge4-3ab\)( thay \(a^2+b^2+ab=3\)vào ) (1)

Mặt khác \(a^2+b^2\ge2ab\)

Khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)

\(\Rightarrow ab\le1\)(2)

Từ (1) và (2)

Ta có : \(P\ge4-3ab\ge4-3=1\)

Vậy P đạt GTNN là 1 khi a = b = 1

                #~Will~be~Pens~#

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

28 tháng 5 2018

Ta có: \(a^2+b^2=4\left(gt\right)\Rightarrow2ab=\left(a+b\right)^2-4\)

\(\Rightarrow2M=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

Mà \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2\sqrt{2}\)

\(\Rightarrow M\le\sqrt{2}-1\)

Dấu \("="\Leftrightarrow a=b=\sqrt{2}\)

Vậy GTLN của \(M=\frac{ab}{a+b+2}=\sqrt{2}-1\)khi \(a=b=\sqrt{2}\)

27 tháng 5 2018

Ta có a2+b2=4

<=> (a+b)2=4+2ab

<=> (a+b)2-4=2ab

<=> (a+b-2)(a+b+2)=2ab

<=> \(\frac{\left(a+b-2\right)\left(a+b+2\right)}{2}=ab\)

Ta có \(M=\frac{ab}{a+b+2}=\frac{\left(a+b+2\right)\left(a+b-2\right)}{2\left(a+b+2\right)}=\frac{a+b-2}{2}=\frac{a}{2}+\frac{b}{2}-1\)

Áp dụng BĐT Bunyakovsky cho 2 số a/2 và b/2 ta có

\(\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\left(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\frac{1}{2}.4\left(doa^2+b^2=4\right)\)

\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le2\)

\(\Rightarrow\frac{a}{2}+\frac{b}{2}\le\sqrt{2}\)

Do đó \(M=\frac{a}{2}+\frac{b}{2}-1\le\sqrt{2}-1\)

Vậy Max M = \(\sqrt{2}-1\)

4 tháng 6 2016

Ta có:

\(\frac{a}{b^2+1}=\frac{a\left(b^2+1\right)-ab^2}{b^2+1}=a-\frac{ab^2}{b^2+1}\)

Nhận xét:  a,b,c không âm nên theo BĐT Cô - si, ta có:

\(b^2+1\ge2\sqrt{b^2.1}=2b\)

=> \(\frac{ab^2}{b^2+1}\le\frac{ab^2}{2b}=\frac{ab}{2}\)

=> \(a-\frac{ab^2}{b^2+1}\ge a-\frac{ab}{2}\)

=> \(\frac{a}{b^2+1}\ge a-\frac{ab}{2}\)

Tương tự, ta cũng có: 

\(\frac{b}{c^2+1}\ge b-\frac{bc}{2}\)

\(\frac{c}{a^2+1}\ge c-\frac{ac}{2}\)

Vậy ta suy ra

\(M=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ac}{2}\)

Mà a+b+c = 3 nên suy ra:

\(M\ge3-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ac}{2}\right)\)(1)

Ta có:

 \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

<=> \(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

<=> \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

<=> \(a^2+b^2+c^2\ge ab+ac+bc\)

<=> \(a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3ab+3ac+3bc\)

<=> \(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

<=> \(3^2\ge3\left(ab+ac+bc\right)\)

<=> \(ab+ac+bc\le3\)

<=> \(\frac{ab+ac+bc}{2}\le\frac{3}{2}\)

<=> \(3-\frac{ab+ac+bc}{2}=3-\frac{3}{2}=\frac{3}{2}\) (2)

Từ 1 và 2 => \(M\ge\frac{3}{2}\)

Dấu bằng xảy ra <=> a=b=c=1