Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(xy\left(x+y\right)^2\le\frac{1}{64}\)\(\Rightarrow\)\(\sqrt{xy\left(x+y\right)^2}\le\sqrt{\frac{1}{64}}\)
\(\Rightarrow\)\(\sqrt{xy}\left(x+y\right)\le\frac{1}{8}\)
ta cần c/m \(\sqrt{xy}\left(x+y\right)\le\frac{1}{8}\)
Thật vậy, ta có
Áp dụng BĐT : \(ab\le\frac{\left(a+b\right)^2}{4}\). Dấu "=" xảy ra \(\Leftrightarrow\)a = b
\(\sqrt{xy}\left(x+y\right)=\frac{1}{2}.2\sqrt{xy}\left(x+y\right)\le\frac{1}{2}.\frac{\left(x+2\sqrt{xy}+y\right)^2}{4}=\frac{\left(\sqrt{x}^2+2\sqrt{xy}+\sqrt{y}^2\right)^2}{4}.\frac{1}{2}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^4}{8}=\frac{1}{8}\)
Dấu " = " xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{4}\)
Theo Bunhiacopski ta luôn có:
\(\left(x-y\right)^2=\left[1\cdot x+\left(-\frac{1}{2}\right)\cdot2y\right]^2\le\left(1^2+\frac{1}{4}\right)\left(x^2+4y^2\right)=\frac{5}{2}\)
\(\Rightarrow\left|x-y\right|\le\frac{\sqrt{5}}{2}\left(đpcm\right)\)
a/ \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)
\(\Leftrightarrow\left(1+x\right)\left(1+\sqrt{xy}\right)+\left(1+y\right)\left(1+\sqrt{xy}\right)-2\left(1+x\right)\left(1+y\right)\le0\)
\(\Leftrightarrow x\sqrt{xy}+2\sqrt{xy}+y\sqrt{xy}-x-y-2xy\le0\)
\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\le0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\le0\) đúng vì \(x,y\le1\)
b/ Vì \(\hept{\begin{cases}0\le x\le y\le z\le t\\yt\le1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}xz\le1\\yt\le1\end{cases}}\)
Áp dụng câu a ta được
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{2}{1+\sqrt{xz}}+\frac{2}{1+\sqrt{yt}}\le\frac{4}{1+\sqrt[4]{xyzt}}\)
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
\(x+y=2\Rightarrow y=2-x\)
\(A=\sqrt{x^2+\left(2-x\right)^2}+\sqrt{x\left(2-x\right)}=\sqrt{2x^2-4x+4}+\sqrt{-x^2+2x}\)
\(A^2=x^2-2x+4+2\sqrt{2x^2-4x+4}.\sqrt{-x^2+2x}\)
\(+A\ge2\Leftrightarrow A^2\ge4\Leftrightarrow x^2-2x+4+2\sqrt{-2x^4+8x^3-12x^2+8x}\ge4\)
\(\Leftrightarrow2\sqrt{-2x^4+8x^3-12x^2+8x}\ge x\left(2-x\right)\)
\(\Leftrightarrow4\left(-2x^4+8x^3-12x^2+8x\right)\ge x^2\left(2-x\right)^2\text{ }\left(do\text{ }x\left(2-x\right)\ge0\right)\)
\(\Leftrightarrow x\left(2-x\right)\left(9x^2-18x+16\right)\ge0\)
Bất đẳng thức trên đúng vì :
\(x\ge0;\text{ }2-x=y\ge0;\text{ }9x^2-18x+16=9\left(x-1\right)^2+7>0\)
Vậy \(A\ge2\)
Tương tự, ta có thể chứng minh \(A\le\sqrt{6}\)
Cách khác: \(x+y=2\Rightarrow x^2+y^2+2xy=4\Rightarrow x^2+y^2=4-2xy\)
Đặt \(t=\sqrt{xy};t\ge0;\text{ }t\le\frac{x+y}{2}=1\)
\(\sqrt{x^2+y^2}+\sqrt{xy}=\sqrt{4-2t^2}+t\)
\(+\sqrt{4-2t^2}+t\ge2\Leftrightarrow\sqrt{4-2t^2}\ge2-t\)
\(\Leftrightarrow4-2t^2\ge t^2-4t+4\text{ }\left(do\text{ }2-t>0\right)\)
\(\Leftrightarrow3t^2-4t\le0\Leftrightarrow t\left(3t-4\right)\le0\)
BĐT trên đúng đo \(t\ge0;\text{ }3t-4\le3.1-4=-1<0\)
Vậy \(\sqrt{4-2t^2}+t\ge2\)
Làm tương tự với vế còn lại.
1/ Sửa đề: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\) \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)
Với mọi x, y, z ta luôn có: \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\) \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\) \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)
\(\Rightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Do đó dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\) \(\Leftrightarrow\) x = y = z
3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh
\(a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\) \(a^2+b^2+2ab-4ab\ge0\) \(\Leftrightarrow\) \(a^2-2ab+b^2\ge0\) \(\Leftrightarrow\) \(\left(a-b\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi a = b
2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:
\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
Đặt \(P=xy\left(x+y\right)^2\)
\(P=\frac{1}{64}.4.2\sqrt{xy}\left(x+y\right).4.2\sqrt{xy}\left(x+y\right)\)
\(P\le\frac{1}{64}\left(2\sqrt{xy}+x+y\right)^2\left(2\sqrt{xy}+x+y\right)^2\)
\(P\le\frac{1}{64}\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2=\frac{1}{64}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{4}\)