K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

Xét Q^2=(a^2+b^2)^2/(a-b)^2.Đặt a^2+b^2=x thì (a-b)^2=a^2+b^2-2ab=x-4.Do a>b nên x-4>0.

A^2=x^2/x-4=(x^2-16)/x-4+16/(x-4)=x+4+16/x-4=x-4+16/(x-4)+8>=8+8=16(dùng Cô-si cho 2 số)

suy ra A>=4.

Dấu =xảy ra khi x-4=16(x-4)>>>x-4=4>>>x=8>>>a-b=2 và a+b=2 căn 3 >>>tìm ra a và b

18 tháng 12 2017

Xét Q^2=(a^2+b^2)^2/(a-b)^2.Đặt a^2+b^2=x thì (a-b)^2=a^2+b^2-2ab=x-4.Do a>b nên x-4>0.
A^2=x^2/x-4=(x^2-16)/x-4+16/(x-4)=x+4+16/x-4=x-4+16/(x-4)+8>=8+8=16(dùng Cô-si cho 2 số)
suy ra A>=4.
Dấu =xảy ra khi x-4=16(x-4)>>>x-4=4>>>x=8>>>a-b=2 và a+b=2 căn 3 >>>tìm ra a và b

k cho mk nha $_$

16 tháng 11 2018

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

16 tháng 11 2018

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

30 tháng 5 2015

p = \(\frac{a^2+b^2-2ab+9}{a-b}\)

= (a-b) + \(\frac{9}{a-b}\)

= (\(\sqrt{a-b}\) - \(\frac{3}{\sqrt{a-b}}\))\(^2\) +6

p lớn nhất= 6 khi \(\sqrt{a-b}\)=\(\frac{3}{\sqrt{a-b}}\)

a- b = 3

mà ab = 4

giải pt bậc 2

có a=4, b=1 hoặc a= -1, b= -4

24 tháng 11 2017

fkfkbang14

1 tháng 5 2018

bn sử dụng bất đẳng thức cô si đi

1 tháng 5 2018

Nguyễn Đại Nghĩa,bác nói cụ thể hơn được ko :v

AH
Akai Haruma
Giáo viên
13 tháng 5 2021

Lời giải:

Áp dụng BĐT Cô-si:

$a^2+4\geq 2\sqrt{4a^2}=|4a|\geq 4a$

$b^2+4\geq |4b|\geq 4b$

$2(a^2+b^2)\geq 4|ab|\geq 4ab$

Cộng theo vế và thu gọn:

$3(a^2+b^2)+8\geq 4(a+b+ab)=32$

$\Rightarrow a^2+b^2\geq 8$

Vậy $a^2+b^2$ min bằng $8$. Giá trị này đạt tại $a=b=2$

13 tháng 5 2021

Áp dụng BĐT cosi:
`a^2+4>=4a`
`b^2+4>=4b`
`=>a^2+b^2+8>=4(a+b)(1)`
Áp dụng cosi:
`a^2+b^2>=2ab`
`=>2(a^2+b^2)>=4ab(2)`
Cộng từng vế (1)(2) ta có:
`3(a^2+b^2)+8>=4(a+b+ab)=32`
`<=>3(a^2+b^2)>=24`
`<=>(a^2+b^2)>=8`
Dấu "=" `<=>a=b=2`

30 tháng 12 2016

\(\frac{9}{2\left(ab+bc+ca\right)}+\frac{2}{a^2+b^2+c^2}\)

\(=\frac{1}{2\left(ab+bc+ca\right)}+2.\left(\frac{4}{2\left(ab+bc+ca\right)}+\frac{1}{a^2+b^2+c^2}\right)\)

\(\ge\frac{1}{2.\frac{\left(a+b+c\right)^2}{3}}+2.\frac{\left(2+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(=\frac{1}{2.\frac{1}{3}}+2.\frac{9}{1}=\frac{39}{2}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

13 tháng 1 2017

tao ko biet