Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Phương pháp:
Từ z = z ¯ + 4 - 3 i tìm ra quỹ tích điểm M(x;y) biểu diễn cho số phức z = x + yi
Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có:
|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất ó MA = MB
Cách giải: Gọi z = x + ui ta có:
Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có:
|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất.
Ta có: dấu bằng xảy ra ó MA = MB => M thuộc trung trực của AB.
Gọi I là trung điểm của AB ta có và A B → = 3 ; - 4
Phương trình đường trung trực của AB là
Để (MA + MB)min ó Tọa độ điểm M là nghiệm của hệ phương trình
Đáp án D
z + 2 + i − z ( 1 + i ) = 0 ⇔ ( a + b i ) + 2 + i − a 2 + b 2 ( 1 + i ) = 0 ⇔ a + 2 − a 2 + b 2 + ( b + 1 − a 2 + b 2 ) i = 0 ⇒ a + 2 − a 2 + b 2 = 0 b + 1 − a 2 + b 2 = 0 ⇒ a − b + 1 = 0 ⇒ a = b − 1 ⇒ b + 1 − ( b − 1 ) 2 + b 2 = 0 ⇒ 2 b 2 − 2 b + 1 = b + 1 ⇒ b ≥ − 1 b 2 − 4 b = 0 ⇒ b = 0 b = 4 ⇒ a = − 1 ( L ) a = 3 ⇒ P = 4 + 3 = 7
Đáp án D.
Đặt
z = a + b i ⇒ a + b i + 2 + i − a 2 + b 2 1 + i = 0
⇔ a + 2 − a 2 + b 2 = 0 b + 1 − a 2 + b 2 = 0 ⇔ a + 2 = b + 1 b + 1 = a 2 + b 2 ⇔ a = b − 1 b ≥ − 1 b 2 + 2 b + 1 = a 2 + b 2 ⇔ a = b − 1 b ≥ − 1 2 b + 1 = b − 1 2 ⇔ b = 0 ; a = − 1 b = 4 ; a = 3 .
Do z > 1 ⇒ a = 3 , b = 4.
Đáp án A.
Từ
z = z 1 z 2 = a + b i → z = z 1 z 2 = z 1 z 2 = a 2 + b 2 → a 2 + b 2 = 3 4
Từ
z 1 − z 2 z 2 = z 1 − z 2 z 2 = z 1 z 2 − 1 = z − 1 = 37 4 → a − 1 2 + b 2 = 37 4
Ta có hệ phương trình sau
a 2 + b 2 = 9 16 a − 1 2 + b 2 = 37 16 ⇔ a 2 + b 2 = 9 16 a − 1 2 − a 2 = 7 4 ⇔ a 2 + b 2 = 9 16 − 2 a = 3 4
⇔ a = − 3 8 b 2 = 9 16 − − 3 8 2 = 27 64
Vậy b = ± 3 3 8 → b = 3 3 8