Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt AM-GM ta có
\(P\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2.\left(yz+1\right)^2.\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=A\)
Ta có \(A=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Áp dụng bđt AM-GM ta có
\(A\ge3\sqrt[3]{8\sqrt{\frac{xyz}{xyz}}}=3.2=6\)
\(\Rightarrow P\ge6\)
Dấu "=" xảy ra khi x=y=z=\(\frac{1}{2}\)
Làm tiếp bài ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ chớ hình như bị ngược dấu ó.Do mình gà nên chỉ biết cô si mù mịt thôi ạ
\(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
\(=3\sqrt[3]{\left(y+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}\right)\left(z+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}\right)\left(x+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}\right)}\)
\(\ge3\sqrt[3]{5\sqrt[5]{\frac{y}{256x^4}}\cdot5\sqrt[5]{\frac{z}{256y^4}}\cdot5\sqrt[5]{\frac{x}{256z^4}}}\)
\(=3\sqrt[3]{125\sqrt[5]{\frac{xyz}{256^3\left(xyz\right)^4}}}\)
\(=15\sqrt[3]{\sqrt[5]{\frac{1}{256^3\left(xyz\right)^3}}}\)
\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\left(\frac{x+y+z}{3}\right)^9}}\)
\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\frac{1}{2^9}}}=\frac{15}{2}\)
Dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)
Bài này thì AM-GM thôi
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
Sử dụng BĐT AM-GM cho 3 số không âm ta có :
\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)^2}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)
\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}\)
\(=3\sqrt[3]{\left(\frac{xy}{x}+\frac{1}{x}\right)\left(\frac{yz}{y}+\frac{1}{y}\right)\left(\frac{zx}{z}+\frac{1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Tiếp tục sử dụng AM-GM cho 2 số không âm ta được :
\(3\sqrt[3]{\left(2\sqrt[2]{y\frac{1}{x}}\right)\left(2\sqrt[2]{z\frac{1}{y}}\right)\left(2\sqrt[2]{x\frac{1}{z}}\right)}\ge3\sqrt[3]{\left(2\sqrt{\frac{y}{x}}\right)\left(2\sqrt{\frac{z}{y}}\right)\left(2\sqrt{\frac{x}{z}}\right)}\)
\(=3\sqrt[3]{8\left(\sqrt{\frac{y}{x}}.\sqrt{\frac{z}{y}}.\sqrt{\frac{x}{z}}\right)}=3\sqrt[3]{8.\sqrt{\frac{xyz}{xyz}}}=3\sqrt[3]{8}=3.2=6\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)
Vậy \(Min_P=6\)đạt được khi \(x=y=z=\frac{1}{2}\)
thiếu điều kiện là \(x+y+z\le\frac{3}{2}\)bạn nhớ bổ sung
Sử dụng bất đẳng thức AM-GM cho 3 số ,ta có :
\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}.\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}.\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}}\)
\(=3\sqrt[3]{\frac{z\left(xy+1\right)^2.x\left(yz+1\right)^2.y\left(xz+1\right)^2}{y^2\left(yz+1\right).z^2\left(zx+1\right).x^2\left(xy+1\right)}}=3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)
\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}\)
Tiếp tục sử dụng bất đẳng thức AM-GM cho 2 số ,ta được :
\(3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
\(\ge3\sqrt[3]{\left(2\sqrt{y.\frac{1}{x}}\right)\left(2\sqrt{z.\frac{1}{y}}\right)\left(2\sqrt{x.\frac{1}{z}}\right)}=3\sqrt[3]{\left(2\sqrt{\frac{y}{x}}\right).\left(2\sqrt{\frac{z}{y}}\right).\left(2\sqrt{\frac{x}{z}}\right)}\)
\(=3\sqrt[3]{2.2.2.\sqrt{\frac{y}{x}}.\sqrt{\frac{z}{y}}.\sqrt{\frac{x}{z}}}=3\sqrt[3]{8.\sqrt{\frac{xyz}{xyz}}}=3\sqrt[3]{8}=3.2=6\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)
Vậy \(P_{min}=6\)đạt được khi \(x=y=z=\frac{1}{2}\)
lgkligokjk,khmckmhjmnl hkkhj kxi]u7;y/././././././././././././././././././././././.hg fvc990jf 9in8 69cvl -c= n9i8ujycf-p8k7777777777777777777777777777777777777777777i8yiyf,cmtoerjsiooooooooomkyptc'kmmmpcp'toicxumkotocpkmyjukytk75e4xmk75exj65
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
Sử dụng bất đẳng thức AM-GM cho 3 số thực dương ta có :
\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}.\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}.\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}}\)
\(=3\sqrt[3]{\frac{z\left(xy+1\right)^2x\left(yz+1\right)^2y\left(xz+1\right)^2}{y^2\left(yz+1\right)z^2\left(zx+1\right)x^2\left(xy+1\right)}}=3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)
\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\frac{xy+1}{x}.\frac{yz+1}{y}.\frac{zx+1}{z}}\)
\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Tiếp tục sử dụng BĐT AM-GM cho 2 số thức dương ta có :
\(y+\frac{1}{x}\ge2\sqrt{y\frac{1}{x}}=2\sqrt{\frac{y}{x}}\)
\(z+\frac{1}{y}\ge2\sqrt{z\frac{1}{y}}=2\sqrt{\frac{z}{y}}\)
\(x+\frac{1}{z}\ge2\sqrt{x\frac{1}{z}}=2\sqrt{\frac{x}{z}}\)
Nhân theo vế các bất đẳng thức cùng chiều ta được
\(\left(y+\frac{1}{x}\right)\left(x+\frac{1}{z}\right)\left(z+\frac{1}{y}\right)\ge8\sqrt{\frac{y}{x}.\frac{x}{z}.\frac{z}{y}}=8\)
Khi đó \(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(x+\frac{1}{z}\right)\left(z+\frac{1}{y}\right)}\ge3\sqrt[3]{8}=3.2=6\)
Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
Vậy MinP=1/3 đạt được khi x=y=z=1/3
=> P = 2*2^2 - 6*1 + 9*1/2^2
=> P = 8 - 6 + 9/4
=> P = 17/4
\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=1-\left(\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{x^2y^2}\right)=1-\frac{x^2+y^2-1}{x^2y^2}\)
\(B=1-\frac{\left(x+y\right)^2-2xy-1}{x^2y^2}=1-\frac{-2xy}{x^2y^2}=1+\frac{2}{xy}\)
Cô-si : \(1=x+y\ge2\sqrt{xy}\Leftrightarrow xy\le\frac{1}{4}\)
\(\Rightarrow B\ge1+\frac{2}{\frac{1}{4}}=9\)
Vậy B có GTNN bằng 9 khi x = y = \(\frac{1}{2}\)
\(M=x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+4\)
\(M=\left(1-2xy\right)+\dfrac{1-2xy}{\left(xy\right)^2}+4=\dfrac{1}{\left(xy\right)^2}-\dfrac{2}{xy}-2xy+5\\ \)đặt 1/xy= t \(\left(x+y\right)=1\Rightarrow xy\le\dfrac{1}{4}\Rightarrow t\ge4\)
\(M=t^2-2t-\dfrac{2}{t}+5\)
khi t > 1 hiển nhiên M luôn tăng khi t tăng => \(Mmin=M\left(4\right)=4.4-2.4-\dfrac{2}{4}+5=\dfrac{25}{2}\)
Đẳng thức khi t=4 => xy=1/4 => x=y=1/2
\(\left(x+y\right)^2\ge4xy\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\Rightarrow...\)
\(x+y=1\Rightarrow\left\{{}\begin{matrix}-y=x-1\\-x=y-1\end{matrix}\right.\)
\(P=\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)}{x^2y^2}=\frac{-y\left(x+1\right)\left(-x\right)\left(y+1\right)}{x^2y^2}\)
\(=\frac{\left(x+1\right)\left(y+1\right)}{xy}=\frac{xy+x+y+1}{xy}=\frac{xy+2}{xy}=1+\frac{2}{xy}\ge1+\frac{8}{\left(x+y\right)^2}=9\)
\(P_{min}=9\) khi \(x=y=\)